Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Mastering Predictive Analytics with R, Second Edition
  • Toc
  • feedback
Mastering Predictive Analytics with R, Second Edition

Mastering Predictive Analytics with R, Second Edition

By : James D. Miller , Rui Miguel Forte
5 (1)
close
Mastering Predictive Analytics with R, Second Edition

Mastering Predictive Analytics with R, Second Edition

5 (1)
By: James D. Miller , Rui Miguel Forte

Overview of this book

R offers a free and open source environment that is perfect for both learning and deploying predictive modeling solutions. With its constantly growing community and plethora of packages, R offers the functionality to deal with a truly vast array of problems. The book begins with a dedicated chapter on the language of models and the predictive modeling process. You will understand the learning curve and the process of tidying data. Each subsequent chapter tackles a particular type of model, such as neural networks, and focuses on the three important questions of how the model works, how to use R to train it, and how to measure and assess its performance using real-world datasets. How do you train models that can handle really large datasets? This book will also show you just that. Finally, you will tackle the really important topic of deep learning by implementing applications on word embedding and recurrent neural networks. By the end of this book, you will have explored and tested the most popular modeling techniques in use on real- world datasets and mastered a diverse range of techniques in predictive analytics using R.
Table of Contents (16 chapters)
close
8
8. Dimensionality Reduction
15
Index

Predicting class membership on synthetic 2D data


Our first example showcasing tree-based methods in R will operate on a synthetic dataset that we have created. The dataset can be generated using commands in the companion R file for this chapter, available from the publisher. The data consists of 287 observations of two input features, x1 and x2.

The output variable is a categorical variable with three possible classes: a, b, and c. If we follow the commands in the code file, we will end up with a data frame in R, mcdf:

> head(mcdf, n = 5)
          x1       x2 class
1 18.58213 12.03106     a
2 22.09922 12.36358     a
3 11.78412 12.75122     a
4 23.41888 13.89088     a
5 16.37667 10.32308     a

This problem is actually very simple because, on the one hand, we have a very small dataset with only two features, and on the other the classes happen to be quite well separated in the feature space, something that is very rare. Nonetheless, our objective in this section is to demonstrate the construction...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete