Book Image

QGIS Python Programming Cookbook, Second Edition - Second Edition

By : Joel Lawhead
Book Image

QGIS Python Programming Cookbook, Second Edition - Second Edition

By: Joel Lawhead

Overview of this book

QGIS is a desktop geographic information system that facilitates data viewing, editing, and analysis. Paired with the most efficient scripting language—Python, we can write effective scripts that extend the core functionality of QGIS. Based on version QGIS 2.18, this book will teach you how to write Python code that works with spatial data to automate geoprocessing tasks in QGIS. It will cover topics such as querying and editing vector data and using raster data. You will also learn to create, edit, and optimize a vector layer for faster queries, reproject a vector layer, reduce the number of vertices in a vector layer without losing critical data, and convert a raster to a vector. Following this, you will work through recipes that will help you compose static maps, create heavily customized maps, and add specialized labels and annotations. As well as this, we’ll also share a few tips and tricks based on different aspects of QGIS.
Table of Contents (16 chapters)
QGIS Python Programming Cookbook - Second Edition
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Storing and reading global preferences


PyQGIS allows you to store application-level preferences and retrieve them. QGIS also has project-level preferences, which can override the application-level preferences in some cases. In this recipe, we'll focus on reading and writing the global preferences that serve as the application defaults. QGIS actually takes advantage of Qt's built-in preferences management.

Getting ready

This code can be run in any type of PyQGIS application. In this example, we'll run it in the QGIS Python console for an easy demonstration. We'll also change the default CRS for new projects and then read the value back from the global settings.

How to do it...

In this recipe, we will set the default projection used by QGIS for new projects. We'll do this using the Python console:

  1. Start QGIS.

  2. From the Plugins menu, select Python Console.

  3. We will need to import the Qt core library, as follows:

            from PyQt4.QtCore import * 
    
  4. In the Python console, run the following code:

            settings = QSettings(QSettings.NativeFormat,
                                 QSettings.UserScope,'QuantumGIS', 'QGis') 
            settings.setValue('/Projections/projectDefaultCrs', 'EPSG:2278') 
            settings.value('/Projections/projectDefaultCrs') 
            settings.sync() 
    

How it works...

This API is actually the Qt API that QGIS relies on for settings. In the QSettings object, we specify the native format for storage, which is the default format for the platform. On Windows, the format is the registry; on OS X, it's the plist files, and on Unix, it's the text files. The other QSettings parameters are the organization and the application, often used as a hierarchy to store information. Note that when you change the settings, you must call the sync() method at the end to save them and let them take effect. Note that when you are writing a standalone QGIS application, you should use your own organization and application name for settings and not QGIS.

There's more...

If you want to see all the options that you can change, call the allKeys() method of QSettings; this will return a list of all the setting names.