Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • OpenGL 4 Shading Language Cookbook
  • Toc
  • feedback
OpenGL 4 Shading Language Cookbook

OpenGL 4 Shading Language Cookbook

By : David A Wolff, Wolff
3.6 (9)
close
OpenGL 4 Shading Language Cookbook

OpenGL 4 Shading Language Cookbook

3.6 (9)
By: David A Wolff, Wolff

Overview of this book

OpenGL 4 Shading Language Cookbook, Third Edition provides easy-to-follow recipes that first walk you through the theory and background behind each technique, and then proceed to showcase and explain the GLSL and OpenGL code needed to implement them. The book begins by familiarizing you with beginner-level topics such as compiling and linking shader programs, saving and loading shader binaries (including SPIR-V), and using an OpenGL function loader library. We then proceed to cover basic lighting and shading effects. After that, you'll learn to use textures, produce shadows, and use geometry and tessellation shaders. Topics such as particle systems, screen-space ambient occlusion, deferred rendering, depth-based tessellation, and physically based rendering will help you tackle advanced topics. OpenGL 4 Shading Language Cookbook, Third Edition also covers advanced topics such as shadow techniques (including the two of the most common techniques: shadow maps and shadow volumes). You will learn how to use noise in shaders and how to use compute shaders. The book provides examples of modern shading techniques that can be used as a starting point for programmers to expand upon to produce modern, interactive, 3D computer-graphics applications.
Table of Contents (13 chapters)
close

Drawing a wireframe on top of a shaded mesh


The preceding recipe demonstrated the use of a geometry shader to produce a different variety of primitives than it received. Geometry shaders can also be used to provide additional information to later stages. They are quite well-suited to doing so because they have access to all of the vertices of the primitive at once, and can do computations based on the entire primitive rather than a single vertex.

This example involves a geometry shader that does not modify the triangle at all. It essentially passes the primitive along unchanged. However, it computes additional information about the triangle that will be used by the fragment shader to highlight the edges of the polygon. The basic idea here is to draw the edges of each polygon directly on top of the shaded mesh.

The following image shows an example of this technique. The mesh edges are drawn on top of the shaded surface by using information computed within the geometry shader:

There are many...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete