Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • OpenGL 4 Shading Language Cookbook
  • Toc
  • feedback
OpenGL 4 Shading Language Cookbook

OpenGL 4 Shading Language Cookbook

By : David A Wolff, Wolff
3.6 (9)
close
OpenGL 4 Shading Language Cookbook

OpenGL 4 Shading Language Cookbook

3.6 (9)
By: David A Wolff, Wolff

Overview of this book

OpenGL 4 Shading Language Cookbook, Third Edition provides easy-to-follow recipes that first walk you through the theory and background behind each technique, and then proceed to showcase and explain the GLSL and OpenGL code needed to implement them. The book begins by familiarizing you with beginner-level topics such as compiling and linking shader programs, saving and loading shader binaries (including SPIR-V), and using an OpenGL function loader library. We then proceed to cover basic lighting and shading effects. After that, you'll learn to use textures, produce shadows, and use geometry and tessellation shaders. Topics such as particle systems, screen-space ambient occlusion, deferred rendering, depth-based tessellation, and physically based rendering will help you tackle advanced topics. OpenGL 4 Shading Language Cookbook, Third Edition also covers advanced topics such as shadow techniques (including the two of the most common techniques: shadow maps and shadow volumes). You will learn how to use noise in shaders and how to use compute shaders. The book provides examples of modern shading techniques that can be used as a starting point for programmers to expand upon to produce modern, interactive, 3D computer-graphics applications.
Table of Contents (13 chapters)
close

Diffuse and per-vertex shading with a single point light source

Before learning the full Phong reflection model, we'll start with just one part: diffuse reflection. It is a simple reflection model that makes the assumption that the surface exhibits purely diffuse reflection. That is to say that the surface appears to scatter light in all directions equally, regardless of direction.

Incoming light strikes the surface and penetrates slightly before being reradiated in all directions. Of course, the incoming light interacts with the surface before it is scattered, causing some wavelengths to be fully or partially absorbed and others to be scattered. A typical example of a diffuse surface is a surface that has been painted with a matte paint. The surface has a dull look with no shine at all.

The following image shows a torus rendered with diffuse shading:

The mathematical...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete