Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Game Physics Cookbook
  • Table Of Contents Toc
  • Feedback & Rating feedback
Game Physics Cookbook

Game Physics Cookbook

By : Gabor Szauer
4.3 (4)
close
close
Game Physics Cookbook

Game Physics Cookbook

4.3 (4)
By: Gabor Szauer

Overview of this book

Physics is really important for game programmers who want to add realism and functionality to their games. Collision detection in particular is a problem that affects all game developers, regardless of the platform, engine, or toolkit they use. This book will teach you the concepts and formulas behind collision detection. You will also be taught how to build a simple physics engine, where Rigid Body physics is the main focus, and learn about intersection algorithms for primitive shapes. You’ll begin by building a strong foundation in mathematics that will be used throughout the book. We’ll guide you through implementing 2D and 3D primitives and show you how to perform effective collision tests for them. We then pivot to one of the harder areas of game development—collision detection and resolution. Further on, you will learn what a Physics engine is, how to set up a game window, and how to implement rendering. We’ll explore advanced physics topics such as constraint solving. You’ll also find out how to implement a rudimentary physics engine, which you can use to build an Angry Birds type of game or a more advanced game. By the end of the book, you will have implemented all primitive and some advanced collision tests, and you will be able to read on geometry and linear Algebra formulas to take forward to your own games!
Table of Contents (19 chapters)
close
close
18
Index

AABB-to-plane


An AABB does not intersect a plane if all four corners of the box are on the same side of the plane. A naive solution to this problem would be to get all eight corners of the plane as points, and then perform a half space test with every corner against the plane.

A better solution would be to use the GetInterval function we wrote in the AABB to OBB section of this chapter to get the interval of the box along the normal of the plane. Then, we just have to make sure that the min and max intervals of the AABB are both greater than 0, or less than 0. If the signs of the min and max are different, we have an intersection.

We are going to take a third, more optimal approach. We will project the half extents of the box onto the plane. Then, we will find the distance between the box and the plane. We find the distance between the box and the plane by measuring how far the projected box interval is from the origin along the normal. If the distance of the box from the plane is less than...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY