Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Game Physics Cookbook
  • Toc
  • feedback
Game Physics Cookbook

Game Physics Cookbook

By : Gabor Szauer
4.3 (4)
close
Game Physics Cookbook

Game Physics Cookbook

4.3 (4)
By: Gabor Szauer

Overview of this book

Physics is really important for game programmers who want to add realism and functionality to their games. Collision detection in particular is a problem that affects all game developers, regardless of the platform, engine, or toolkit they use. This book will teach you the concepts and formulas behind collision detection. You will also be taught how to build a simple physics engine, where Rigid Body physics is the main focus, and learn about intersection algorithms for primitive shapes. You’ll begin by building a strong foundation in mathematics that will be used throughout the book. We’ll guide you through implementing 2D and 3D primitives and show you how to perform effective collision tests for them. We then pivot to one of the harder areas of game development—collision detection and resolution. Further on, you will learn what a Physics engine is, how to set up a game window, and how to implement rendering. We’ll explore advanced physics topics such as constraint solving. You’ll also find out how to implement a rudimentary physics engine, which you can use to build an Angry Birds type of game or a more advanced game. By the end of the book, you will have implemented all primitive and some advanced collision tests, and you will be able to read on geometry and linear Algebra formulas to take forward to your own games!
Table of Contents (19 chapters)
close
18
Index

Projection

Sometimes it's useful to decompose a vector into parallel and perpendicular components with respect to another vector. Projecting Projection onto Projection will give us the length of Projection in the direction of Projection. This projection decomposes Projection into its parallel component with respect to Projection. Once we know the parallel component of Projection, we can use it to get the perpendicular component. The formula for projecting Projection onto Projection is as follows:

Projection

The perpendicular component of Projection with respect to Projection is defined as follows:

Projection

Getting ready

Implementing the projection is fairly straightforward as we already have both the dot product and magnitude squared defined. In the following function, the vector being projected is represented by the variable length, and the vector it is being projected onto is represented by the variable direction. If we compare it to the preceding formula, length is Getting ready, and direction is Getting ready.

How to do it…

Follow these steps to implement projection functions for two and three dimensional vectors. A function to get the perpendicular component of the projection is also described:

  1. Declare the projection and perpendicular functions in vectors.h:
    vec2 Project(const vec2& length, const vec2& direction);
    vec3 Project(const vec3& length, const vec3& direction);
    
    vec2 Perpendicular(const vec2& len, const vec2& dir);
    vec3 Perpendicular(const vec3& len, const vec3& dir);
  2. Add the implementation of projection to vectors.cpp:
    vec2 Project(const vec2& length, const vec2& direction) {
       float dot = Dot(length, direction);
       float magSq = MagnitudeSq(direction);
       return direction * (dot / magSq);
    }
    
    vec3 Project(const vec3& length, const vec3& direction) {
       float dot = Dot(length, direction);
       float magSq = MagnitudeSq(direction);
       return direction * (dot / magSq);
    }
  3. Add the implementation of perpendicular to vectors.cpp:
    vec2 Perpendicular(const vec2& len, const vec2& dir) {
       return len - Project(len, dir);
    }
    
    vec3 Perpendicular(const vec3& len, const vec3& dir) {
       return len - Project(len, dir);
    }

How it works…

Let's explore how projection works. Say we want to project How it works… onto How it works…, to find How it works…. Having a ' character next to a vector means prime; it's a transformed version of the vector; How it works… is pronounced A-Prime:

How it works…

From the preceding figure we see that How it works… can be found by subtracting some unknown vector from How it works…. This unknown vector is the perpendicular component of How it works… with respect to How it works…, let's call it How it works…:

How it works…

We can get the perpendicular component How it works… by subtracting the projection of How it works… onto How it works… fromHow it works…. The projection at this point is still unknown, that's what we are trying to find:

How it works…

Because How it works… points in the same direction as How it works…, we can express How it works… as scaling How it works… by some unknown scalar s, How it works…. Knowing this, the problem becomes, how do we find s?:

How it works…

The dot product of two perpendicular vectors is 0. Because of this, the dot product of How it works… and How it works… is going to be 0:

How it works…

Substitute the value of How it works… with the equation we use to find its value, How it works…:

How it works…

Finally, let's substitute How it works… with the equation we use to find its value, How it works…:

How it works…

Now the only unknown in the formula is s, let's try to find it. The dot product exhibits the distributive property, let's distribute How it works…:

How it works…

Let's start to isolate s, first we add How it works… to both sides of the equation:

How it works…

Now we can isolate s if we divide both sides of the equation by How it works…. Remember, the dot product of a vector with itself yields the square magnitude of that vector:

How it works…

Now we can solve How it works… by substituting s with the preceding formula. The final equation becomes:

How it works…
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete