Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Artificial Intelligence for IoT Cookbook
  • Toc
  • feedback
Artificial Intelligence for IoT Cookbook

Artificial Intelligence for IoT Cookbook

By : Roshak
4.9 (10)
close
Artificial Intelligence for IoT Cookbook

Artificial Intelligence for IoT Cookbook

4.9 (10)
By: Roshak

Overview of this book

Artificial intelligence (AI) is rapidly finding practical applications across a wide variety of industry verticals, and the Internet of Things (IoT) is one of them. Developers are looking for ways to make IoT devices smarter and to make users’ lives easier. With this AI cookbook, you’ll be able to implement smart analytics using IoT data to gain insights, predict outcomes, and make informed decisions, along with covering advanced AI techniques that facilitate analytics and learning in various IoT applications. Using a recipe-based approach, the book will take you through essential processes such as data collection, data analysis, modeling, statistics and monitoring, and deployment. You’ll use real-life datasets from smart homes, industrial IoT, and smart devices to train and evaluate simple to complex models and make predictions using trained models. Later chapters will take you through the key challenges faced while implementing machine learning, deep learning, and other AI techniques, such as natural language processing (NLP), computer vision, and embedded machine learning for building smart IoT systems. In addition to this, you’ll learn how to deploy models and improve their performance with ease. By the end of this book, you’ll be able to package and deploy end-to-end AI apps and apply best practice solutions to common IoT problems.
Table of Contents (11 chapters)
close

How to do it...

Importing files into Delta Lake is easy. Data can be imported through files or streaming. The steps for this recipe are as follows:

  1. In Databricks, open the data panel by clicking on the Data button, click on the Add Data button, and drag your file into the Upload section.
  2. Click on Create Table in Notebook. The code generated for you will start with this:
# File location and type
file_location = "/FileStore/tables/soilmoisture_dataset.csv"
file_type = "csv"

# CSV options
infer_schema = "false"
first_row_is_header = "false"
delimiter = ","

df = spark.read.format(file_type) \
.option("inferSchema", infer_schema) \
.option("header", first_row_is_header) \
.option("sep", delimiter) \
.load(file_location)

display(df)
  1. Review the data and when you are ready to save to Delta Lake, uncomment the last line:
# df.write.format("parquet").saveAsTable(permanent_table_name)
  1. Then, change "parquet" to "delta":
df.write.format("delta").saveAsTable(permanent_table_name)
  1. From here, query the data:
%sql
SELECT * FROM soilmoisture
  1. Alternatively, you can optimize how Delta Lake saves the file, making querying faster:
%sql
OPTIMIZE soilmoisture ZORDER BY (deviceid)

Delta Lake data can be updated, filtered, and aggregated. In addition, it can be turned into a Spark or Koalas DataFrame easily.

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete