Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Artificial Intelligence for IoT Cookbook
  • Toc
  • feedback
Artificial Intelligence for IoT Cookbook

Artificial Intelligence for IoT Cookbook

By : Roshak
4.9 (10)
close
Artificial Intelligence for IoT Cookbook

Artificial Intelligence for IoT Cookbook

4.9 (10)
By: Roshak

Overview of this book

Artificial intelligence (AI) is rapidly finding practical applications across a wide variety of industry verticals, and the Internet of Things (IoT) is one of them. Developers are looking for ways to make IoT devices smarter and to make users’ lives easier. With this AI cookbook, you’ll be able to implement smart analytics using IoT data to gain insights, predict outcomes, and make informed decisions, along with covering advanced AI techniques that facilitate analytics and learning in various IoT applications. Using a recipe-based approach, the book will take you through essential processes such as data collection, data analysis, modeling, statistics and monitoring, and deployment. You’ll use real-life datasets from smart homes, industrial IoT, and smart devices to train and evaluate simple to complex models and make predictions using trained models. Later chapters will take you through the key challenges faced while implementing machine learning, deep learning, and other AI techniques, such as natural language processing (NLP), computer vision, and embedded machine learning for building smart IoT systems. In addition to this, you’ll learn how to deploy models and improve their performance with ease. By the end of this book, you’ll be able to package and deploy end-to-end AI apps and apply best practice solutions to common IoT problems.
Table of Contents (11 chapters)
close

How it works...

After completing the wizard, you should see something in your Visual Studio Code explorer that looks like the following:

Let's explore what was created for you. The main entry point for the project is main.pymain.py has a sample to help make the development time faster. To deploy main.py, you will use the deployment.template.json file. Right-clicking on deployment.template.json brings up a menu that has an option to create a deployment manifest. In the modules folder, there is a sample module with three Docker files for ARM32, AMD64, and AMD64 in debug mode. These are the currently supported chip set architectures. Dockerfile.arm32v7 is the architecture that is supported on Raspberry Pi v3.

To make sure you build ARM32 containers and not AMD64 containers, go into the module.json file and remove any references to other Docker files. For example, the following has three Docker references:

platforms": {
"amd64&quot...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete