Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Applied Deep Learning and Computer Vision for Self-Driving Cars
  • Toc
  • feedback
Applied Deep Learning and Computer Vision for Self-Driving Cars

Applied Deep Learning and Computer Vision for Self-Driving Cars

By : Sumit Ranjan, Dr. S. Senthamilarasu
4.3 (9)
close
Applied Deep Learning and Computer Vision for Self-Driving Cars

Applied Deep Learning and Computer Vision for Self-Driving Cars

4.3 (9)
By: Sumit Ranjan, Dr. S. Senthamilarasu

Overview of this book

Thanks to a number of recent breakthroughs, self-driving car technology is now an emerging subject in the field of artificial intelligence and has shifted data scientists' focus to building autonomous cars that will transform the automotive industry. This book is a comprehensive guide to use deep learning and computer vision techniques to develop autonomous cars. Starting with the basics of self-driving cars (SDCs), this book will take you through the deep neural network techniques required to get up and running with building your autonomous vehicle. Once you are comfortable with the basics, you'll delve into advanced computer vision techniques and learn how to use deep learning methods to perform a variety of computer vision tasks such as finding lane lines, improving image classification, and so on. You will explore the basic structure and working of a semantic segmentation model and get to grips with detecting cars using semantic segmentation. The book also covers advanced applications such as behavior-cloning and vehicle detection using OpenCV, transfer learning, and deep learning methodologies to train SDCs to mimic human driving. By the end of this book, you'll have learned how to implement a variety of neural networks to develop your own autonomous vehicle using modern Python libraries.
Table of Contents (18 chapters)
close
1
Section 1: Deep Learning Foundation and SDC Basics
5
Section 2: Deep Learning and Computer Vision Techniques for SDC
10
Section 3: Semantic Segmentation for Self-Driving Cars
13
Section 4: Advanced Implementations

Converting the image into grayscale

We learned in Chapter 4, Computer Vision for Self-Driving Cars, that a three-channel color image has red, green, and blue channels (each pixel being a combination of these three channel values). A grayscale image has only one channel for each pixel (with 0 being black and 255 being white). Naturally, processing a single-channel image is faster than processing a three-channel color image, and it is less computationally expensive, too.

Also, in this chapter, we will develop an edge-detection algorithm. The edge-detection algorithm's main goal is to identify the boundaries of the objects within an image. Later in this chapter, we will be detecting edges to find a region in an image with a sharp change in the pixels

Now, as a first step, we will convert the image into grayscale:

  1. Import the following libraries, which we need to convert the image into grayscale:
In[1]: import cv2
In[2]: import numpy as np
  1. Read in and...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete