Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Applied Deep Learning and Computer Vision for Self-Driving Cars
  • Table Of Contents Toc
  • Feedback & Rating feedback
Applied Deep Learning and Computer Vision for Self-Driving Cars

Applied Deep Learning and Computer Vision for Self-Driving Cars

By : Sumit Ranjan, Dr. S. Senthamilarasu
4.3 (9)
close
close
Applied Deep Learning and Computer Vision for Self-Driving Cars

Applied Deep Learning and Computer Vision for Self-Driving Cars

4.3 (9)
By: Sumit Ranjan, Dr. S. Senthamilarasu

Overview of this book

Thanks to a number of recent breakthroughs, self-driving car technology is now an emerging subject in the field of artificial intelligence and has shifted data scientists' focus to building autonomous cars that will transform the automotive industry. This book is a comprehensive guide to use deep learning and computer vision techniques to develop autonomous cars. Starting with the basics of self-driving cars (SDCs), this book will take you through the deep neural network techniques required to get up and running with building your autonomous vehicle. Once you are comfortable with the basics, you'll delve into advanced computer vision techniques and learn how to use deep learning methods to perform a variety of computer vision tasks such as finding lane lines, improving image classification, and so on. You will explore the basic structure and working of a semantic segmentation model and get to grips with detecting cars using semantic segmentation. The book also covers advanced applications such as behavior-cloning and vehicle detection using OpenCV, transfer learning, and deep learning methodologies to train SDCs to mimic human driving. By the end of this book, you'll have learned how to implement a variety of neural networks to develop your own autonomous vehicle using modern Python libraries.
Table of Contents (18 chapters)
close
close
1
Section 1: Deep Learning Foundation and SDC Basics
5
Section 2: Deep Learning and Computer Vision Techniques for SDC
10
Section 3: Semantic Segmentation for Self-Driving Cars
13
Section 4: Advanced Implementations

Advantages of Keras 

Keras follows the best practices associated with reducing cognitive load. It offers simple and consistent APIs and affords us the freedom to design our own architecture.

Keras provides clear feedback on user error, which minimizes the number of user actions required. It provides high flexibility as it integrates with lower-level deep learning languages such as TensorFlow. You can implement anything that was built in the base language.

Keras also supports various programming languages. We can develop Keras in Python, as well as R. We can also run the code with TensorFlow, CNTK, Theano, and MXNet, which can be run on the CPU, TPU, and GPU as well. The best part is that it supports both NVIDIA and AMD GPUs. These advantages offered by Keras ensure that producing models with Keras is really simple. It can run with TensorFlow Serving, GPU acceleration (web Keras, Keras.js), Android (TF, TF Lite), iOS (Native CoreML), and Raspberry Pi.

In the next...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY