Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Active Machine Learning with Python
  • Table Of Contents Toc
  • Feedback & Rating feedback
Active Machine Learning with Python

Active Machine Learning with Python

By : Margaux Masson-Forsythe
3.5 (2)
close
close
Active Machine Learning with Python

Active Machine Learning with Python

3.5 (2)
By: Margaux Masson-Forsythe

Overview of this book

Building accurate machine learning models requires quality data—lots of it. However, for most teams, assembling massive datasets is time-consuming, expensive, or downright impossible. Led by Margaux Masson-Forsythe, a seasoned ML engineer and advocate for surgical data science and climate AI advancements, this hands-on guide to active machine learning demonstrates how to train robust models with just a fraction of the data using Python's powerful active learning tools. You’ll master the fundamental techniques of active learning, such as membership query synthesis, stream-based sampling, and pool-based sampling and gain insights for designing and implementing active learning algorithms with query strategy and Human-in-the-Loop frameworks. Exploring various active machine learning techniques, you’ll learn how to enhance the performance of computer vision models like image classification, object detection, and semantic segmentation and delve into a machine AL method for selecting the most informative frames for labeling large videos, addressing duplicated data. You’ll also assess the effectiveness and efficiency of active machine learning systems through performance evaluation. By the end of the book, you’ll be able to enhance your active learning projects by leveraging Python libraries, frameworks, and commonly used tools.
Table of Contents (13 chapters)
close
close
Free Chapter
1
Part 1: Fundamentals of Active Machine Learning
5
Part 2: Active Machine Learning in Practice
8
Part 3: Applying Active Machine Learning to Real-World Projects

What this book covers

Chapter 1, Introducing Active Machine Learning, explores the fundamental principles of active machine learning, a highly effective approach that significantly differs from passive methods. This chapter also offers insights into its distinctive strategies and advantages.

Chapter 2, Designing Query Strategy Frameworks, presents a comprehensive exploration of the most effective and widely utilized query strategy frameworks in active machine learning and covers uncertainty sampling, query-by-committee, expected model change, expected error reduction, and density-weighted methods.

Chapter 3, Managing the Human in the Loop, discusses the best practices and techniques for the design of interactive active machine learning systems, with an emphasis on optimizing human-in-the-loop labeling. Aspects such as labeling interface design, the crafting of effective workflows, strategies for resolving model-label disagreements, the selection of suitable labelers, and their efficient management are covered.

Chapter 4, Applying Active Learning to Computer Vision, covers various techniques for harnessing the power of active machine learning to enhance computer vision model performance in tasks such as image classification, object detection, and semantic segmentation, also addressing the challenges in their application.

Chapter 5, Leveraging Active Learning for Big Data, explores the active machine learning techniques for managing big data such as videos, and acknowledges the challenges in developing video analysis models due to their large size and frequent data duplication based on frames-per-second rates, with a demonstration of an active machine learning method for selecting the most informative frames for labeling.

Chapter 6, Evaluating and Enhancing Efficiency, details the evaluation of active machine learning systems, encompassing metrics, automation, efficient labeling, testing, monitoring, and stopping criteria, aiming for accurate evaluations and insights into system efficiency, guiding informed improvements in the field.

Chapter 7, Utilizing Tools and Packages for Active ML, discusses the Python libraries, frameworks, and tools commonly used for active learning, highlighting their value in implementing various active learning techniques and offering an overview suitable for both beginners and experienced programmers.

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY