Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Building Big Data Pipelines with Apache Beam
  • Toc
  • feedback
Building Big Data Pipelines with Apache Beam

Building Big Data Pipelines with Apache Beam

By : Lukavský
3.7 (9)
close
Building Big Data Pipelines with Apache Beam

Building Big Data Pipelines with Apache Beam

3.7 (9)
By: Lukavský

Overview of this book

Apache Beam is an open source unified programming model for implementing and executing data processing pipelines, including Extract, Transform, and Load (ETL), batch, and stream processing. This book will help you to confidently build data processing pipelines with Apache Beam. You’ll start with an overview of Apache Beam and understand how to use it to implement basic pipelines. You’ll also learn how to test and run the pipelines efficiently. As you progress, you’ll explore how to structure your code for reusability and also use various Domain Specific Languages (DSLs). Later chapters will show you how to use schemas and query your data using (streaming) SQL. Finally, you’ll understand advanced Apache Beam concepts, such as implementing your own I/O connectors. By the end of this book, you’ll have gained a deep understanding of the Apache Beam model and be able to apply it to solve problems.
Table of Contents (13 chapters)
close
1
Section 1 Apache Beam: Essentials
5
Section 2 Apache Beam: Toward Improving Usability
9
Section 3 Apache Beam: Advanced Concepts

Chapter 6: Using Your Preferred Language with Portability

In the previous chapters, we focused on the Java SDK – or various Java SDK-based DSLs – but what if we want to implement our data transformation logic in a completely different language, such as Python or Go? One of the main goals of Apache Beam is portability. We have already seen the portability of pipelines between different Runners and between batch and streaming semantics. In this chapter, we will explore the last aspect of portability – portability between SDKs.

We will outline how the portability layer works (Apache Beam often calls it the Fn API – pronounced Fun API) so that the result is portable. The desired goal is to enable Runners so that they don't have to understand the SDK (the language we want to use to implement our pipeline), yet can still execute it successfully. That way, new SDKs can be created without us needing to make modifications to the currently existing Runners...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete