Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Building Big Data Pipelines with Apache Beam
  • Toc
  • feedback
Building Big Data Pipelines with Apache Beam

Building Big Data Pipelines with Apache Beam

By : Lukavský
3.7 (9)
close
Building Big Data Pipelines with Apache Beam

Building Big Data Pipelines with Apache Beam

3.7 (9)
By: Lukavský

Overview of this book

Apache Beam is an open source unified programming model for implementing and executing data processing pipelines, including Extract, Transform, and Load (ETL), batch, and stream processing. This book will help you to confidently build data processing pipelines with Apache Beam. You’ll start with an overview of Apache Beam and understand how to use it to implement basic pipelines. You’ll also learn how to test and run the pipelines efficiently. As you progress, you’ll explore how to structure your code for reusability and also use various Domain Specific Languages (DSLs). Later chapters will show you how to use schemas and query your data using (streaming) SQL. Finally, you’ll understand advanced Apache Beam concepts, such as implementing your own I/O connectors. By the end of this book, you’ll have gained a deep understanding of the Apache Beam model and be able to apply it to solve problems.
Table of Contents (13 chapters)
close
1
Section 1 Apache Beam: Essentials
5
Section 2 Apache Beam: Toward Improving Usability
9
Section 3 Apache Beam: Advanced Concepts

Task 15 – Implementing SchemaSportTracker

In this section, we will reimplement a task from Chapter 2, Implementing, Testing, and Deploying Basic Pipelines. We have included this to learn how to overcome some limitations of SQL when using schemas – notably, the (current) inability to perform aggregation (UDAF) using multiple fields. In our computation, we need to aggregate a composite (a Row) that has three fields – latitude, longitude, and timestamp.

Again, for clarity, let's recap the definition of our problem.

Problem definition

Given a stream of GPS locations and timestamps for a workout of a specific user (a workout has an ID that is guaranteed to be unique among all users), compute the performance metrics for each workout. These metrics should contain the total duration and distance elapsed from the start of the workout to the present.

Problem decomposition discussion

The actual business logic of computing the distance from GPS location...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete