Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Building Big Data Pipelines with Apache Beam
  • Toc
  • feedback
Building Big Data Pipelines with Apache Beam

Building Big Data Pipelines with Apache Beam

By : Lukavský
3.7 (9)
close
Building Big Data Pipelines with Apache Beam

Building Big Data Pipelines with Apache Beam

3.7 (9)
By: Lukavský

Overview of this book

Apache Beam is an open source unified programming model for implementing and executing data processing pipelines, including Extract, Transform, and Load (ETL), batch, and stream processing. This book will help you to confidently build data processing pipelines with Apache Beam. You’ll start with an overview of Apache Beam and understand how to use it to implement basic pipelines. You’ll also learn how to test and run the pipelines efficiently. As you progress, you’ll explore how to structure your code for reusability and also use various Domain Specific Languages (DSLs). Later chapters will show you how to use schemas and query your data using (streaming) SQL. Finally, you’ll understand advanced Apache Beam concepts, such as implementing your own I/O connectors. By the end of this book, you’ll have gained a deep understanding of the Apache Beam model and be able to apply it to solve problems.
Table of Contents (13 chapters)
close
1
Section 1 Apache Beam: Essentials
5
Section 2 Apache Beam: Toward Improving Usability
9
Section 3 Apache Beam: Advanced Concepts

Using side outputs

As the name suggests, side inputs are something that is added to the main input from the side, while side outputs are something that is output from the DoFn object outside of the main PCollection output. Let's start with the side outputs, as they are more straightforward.

As an example, let's imagine we are processing data coming in as JSON values. We need to parse these messages into an internal object. But what should we do with the values that cannot be parsed because they contain a syntax error? If we do not do any validation before we store them in the stream (topic), then it is certainly possible that we will encounter such a situation. We can silently drop those records, but that is obviously not a great idea, as that could cause hard-to-debug problems. A much better option would be to store these values on the side to be able to investigate and fix them. Therefore, we should aim to do the following:

Figure 3.8 – Main...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete