Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Debugging Machine Learning Models with Python
  • Toc
  • feedback
Debugging Machine Learning Models with Python

Debugging Machine Learning Models with Python

By : Ali Madani
4.9 (16)
close
Debugging Machine Learning Models with Python

Debugging Machine Learning Models with Python

4.9 (16)
By: Ali Madani

Overview of this book

Debugging Machine Learning Models with Python is a comprehensive guide that navigates you through the entire spectrum of mastering machine learning, from foundational concepts to advanced techniques. It goes beyond the basics to arm you with the expertise essential for building reliable, high-performance models for industrial applications. Whether you're a data scientist, analyst, machine learning engineer, or Python developer, this book will empower you to design modular systems for data preparation, accurately train and test models, and seamlessly integrate them into larger technologies. By bridging the gap between theory and practice, you'll learn how to evaluate model performance, identify and address issues, and harness recent advancements in deep learning and generative modeling using PyTorch and scikit-learn. Your journey to developing high quality models in practice will also encompass causal and human-in-the-loop modeling and machine learning explainability. With hands-on examples and clear explanations, you'll develop the skills to deliver impactful solutions across domains such as healthcare, finance, and e-commerce.
Table of Contents (26 chapters)
close
1
Part 1:Debugging for Machine Learning Modeling
5
Part 2:Improving Machine Learning Models
10
Part 3:Low-Bug Machine Learning Development and Deployment
15
Part 4:Deep Learning Modeling
19
Part 5:Advanced Topics in Model Debugging

Improving pre-training data processing

Data processing in the early stages of a machine learning life cycle, before model training and evaluation, determines the quality of the data we feed into the training, validation, and testing process, and consequently our success in achieving a high-performance and reliable model.

Anomaly detection and outlier removal

Anomalies and outliers in your data could decrease the performance and reliability of your models in production. The existence of outliers in training data, the data you use for model evaluation, and unseen data in production could have different impacts:

  • Outliers in model training: The existence of outliers in the training data for supervised learning models could result in lower model generalizability. It could cause unnecessarily complex decision boundaries in classification or unnecessary nonlinearity in regression models.
  • Outliers in model evaluation: Outliers in validation and test data could lower the model...
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete