Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Debugging Machine Learning Models with Python
  • Table Of Contents Toc
  • Feedback & Rating feedback
Debugging Machine Learning Models with Python

Debugging Machine Learning Models with Python

By : Ali Madani
4.9 (16)
close
close
Debugging Machine Learning Models with Python

Debugging Machine Learning Models with Python

4.9 (16)
By: Ali Madani

Overview of this book

Debugging Machine Learning Models with Python is a comprehensive guide that navigates you through the entire spectrum of mastering machine learning, from foundational concepts to advanced techniques. It goes beyond the basics to arm you with the expertise essential for building reliable, high-performance models for industrial applications. Whether you're a data scientist, analyst, machine learning engineer, or Python developer, this book will empower you to design modular systems for data preparation, accurately train and test models, and seamlessly integrate them into larger technologies. By bridging the gap between theory and practice, you'll learn how to evaluate model performance, identify and address issues, and harness recent advancements in deep learning and generative modeling using PyTorch and scikit-learn. Your journey to developing high quality models in practice will also encompass causal and human-in-the-loop modeling and machine learning explainability. With hands-on examples and clear explanations, you'll develop the skills to deliver impactful solutions across domains such as healthcare, finance, and e-commerce.
Table of Contents (26 chapters)
close
close
1
Part 1:Debugging for Machine Learning Modeling
5
Part 2:Improving Machine Learning Models
10
Part 3:Low-Bug Machine Learning Development and Deployment
15
Part 4:Deep Learning Modeling
19
Part 5:Advanced Topics in Model Debugging

Chapter 7 – Decreasing Bias and Achieving Fairness

  1. No. There might be proxies in our models for sensitive attributes, but not in our models.
  2. Salary and income (in some countries), occupation, a history of a felony charge.
  3. Not necessarily. Satisfying fairness according to demographic parity wouldn’t necessarily result in a model being fair according to equalized odds.
  4. Demographic parity is a group fairness definition to ensure that a model’s predictions are not dependent on a given sensitive attribute, such as ethnicity or sex.

Equalized odds is satisfied when a given prediction is independent of the group of a given sensitive attribute and the real output.

  1. Not necessarily. For example, there could be feature proxies for 'sex' among top contributors to model predictions.
  2. We can use explainability techniques to identify potential biases in our models and then plan to improve them toward fairness. For example, we can identify...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY