Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Debugging Machine Learning Models with Python
  • Toc
  • feedback
Debugging Machine Learning Models with Python

Debugging Machine Learning Models with Python

By : Ali Madani
4.9 (16)
close
Debugging Machine Learning Models with Python

Debugging Machine Learning Models with Python

4.9 (16)
By: Ali Madani

Overview of this book

Debugging Machine Learning Models with Python is a comprehensive guide that navigates you through the entire spectrum of mastering machine learning, from foundational concepts to advanced techniques. It goes beyond the basics to arm you with the expertise essential for building reliable, high-performance models for industrial applications. Whether you're a data scientist, analyst, machine learning engineer, or Python developer, this book will empower you to design modular systems for data preparation, accurately train and test models, and seamlessly integrate them into larger technologies. By bridging the gap between theory and practice, you'll learn how to evaluate model performance, identify and address issues, and harness recent advancements in deep learning and generative modeling using PyTorch and scikit-learn. Your journey to developing high quality models in practice will also encompass causal and human-in-the-loop modeling and machine learning explainability. With hands-on examples and clear explanations, you'll develop the skills to deliver impactful solutions across domains such as healthcare, finance, and e-commerce.
Table of Contents (26 chapters)
close
1
Part 1:Debugging for Machine Learning Modeling
5
Part 2:Improving Machine Learning Models
10
Part 3:Low-Bug Machine Learning Development and Deployment
15
Part 4:Deep Learning Modeling
19
Part 5:Advanced Topics in Model Debugging

Correlation versus Causality

In previous chapters of this book, you learned how to train, evaluate, and build high-performance and low-bias machine learning models. However, the algorithms and example methods we used to practice the concepts that were introduced in this book do not necessarily provide you with a causal relationship between features and output variables in a supervised learning setting. In this chapter, we will discuss how causal inference and modeling could help you increase the reliability of your models in production.

In this chapter, we will cover the following topics:

  • Correlation as part of machine learning models
  • Causal modeling to reduce risks and improve performance
  • Assessing causation in machine learning models
  • Causal modeling using Python

By the end of this chapter, you will have learned about the benefits of causal modeling and inference compared to correlative modeling and practice with available Python functionalities to identify...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete