Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Debugging Machine Learning Models with Python
  • Toc
  • feedback
Debugging Machine Learning Models with Python

Debugging Machine Learning Models with Python

By : Ali Madani
4.9 (16)
close
Debugging Machine Learning Models with Python

Debugging Machine Learning Models with Python

4.9 (16)
By: Ali Madani

Overview of this book

Debugging Machine Learning Models with Python is a comprehensive guide that navigates you through the entire spectrum of mastering machine learning, from foundational concepts to advanced techniques. It goes beyond the basics to arm you with the expertise essential for building reliable, high-performance models for industrial applications. Whether you're a data scientist, analyst, machine learning engineer, or Python developer, this book will empower you to design modular systems for data preparation, accurately train and test models, and seamlessly integrate them into larger technologies. By bridging the gap between theory and practice, you'll learn how to evaluate model performance, identify and address issues, and harness recent advancements in deep learning and generative modeling using PyTorch and scikit-learn. Your journey to developing high quality models in practice will also encompass causal and human-in-the-loop modeling and machine learning explainability. With hands-on examples and clear explanations, you'll develop the skills to deliver impactful solutions across domains such as healthcare, finance, and e-commerce.
Table of Contents (26 chapters)
close
1
Part 1:Debugging for Machine Learning Modeling
5
Part 2:Improving Machine Learning Models
10
Part 3:Low-Bug Machine Learning Development and Deployment
15
Part 4:Deep Learning Modeling
19
Part 5:Advanced Topics in Model Debugging

Chapter 14 – Introduction to Recent Advancements in Machine Learning

  1. Transformer-based text generation, VAEs, and GANs.
  2. Different versions of LLaMA and GPT.
  3. The generator, which could be a neural network architecture for generating desired data types, such as images, generates images aiming to fool the discriminator into recognizing the generated data as real data. The discriminator learns to remain good at recognizing generated data compared to real data.
  4. You can improve your prompting by being specific about the question and specifying for whom the data is being generated.
  5. In RLHF, the reward is calculated based on the feedback of humans, either experts or non-experts, depending on the problem. But the reward is not like a predefined mathematical formula considering the complexity of problems such as language modeling. The feedback provided by humans results in improving the model step by step.
  6. The idea of contrastive learning is to learn representations...
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete