Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Debugging Machine Learning Models with Python
  • Toc
  • feedback
Debugging Machine Learning Models with Python

Debugging Machine Learning Models with Python

By : Ali Madani
4.9 (16)
close
Debugging Machine Learning Models with Python

Debugging Machine Learning Models with Python

4.9 (16)
By: Ali Madani

Overview of this book

Debugging Machine Learning Models with Python is a comprehensive guide that navigates you through the entire spectrum of mastering machine learning, from foundational concepts to advanced techniques. It goes beyond the basics to arm you with the expertise essential for building reliable, high-performance models for industrial applications. Whether you're a data scientist, analyst, machine learning engineer, or Python developer, this book will empower you to design modular systems for data preparation, accurately train and test models, and seamlessly integrate them into larger technologies. By bridging the gap between theory and practice, you'll learn how to evaluate model performance, identify and address issues, and harness recent advancements in deep learning and generative modeling using PyTorch and scikit-learn. Your journey to developing high quality models in practice will also encompass causal and human-in-the-loop modeling and machine learning explainability. With hands-on examples and clear explanations, you'll develop the skills to deliver impactful solutions across domains such as healthcare, finance, and e-commerce.
Table of Contents (26 chapters)
close
1
Part 1:Debugging for Machine Learning Modeling
5
Part 2:Improving Machine Learning Models
10
Part 3:Low-Bug Machine Learning Development and Deployment
15
Part 4:Deep Learning Modeling
19
Part 5:Advanced Topics in Model Debugging

Test-driven development for machine learning modeling

One approach to reducing the risks of developing unreliable models and pushing them to production is test-driven development. We aim to design unit tests (that is, tests designed to test individual components of software) that reduce the risks of code revision either within the same or in different life cycles. To better understand this concept, we need to understand what unit tests are and how we can design and use them in Python.

Unit testing

Unit tests are designed to test the smallest components, or units, in the code and software we design. In machine learning modeling, we might have many modules taking care of different steps of a machine learning life cycle, such as data curation and wrangling or model evaluation. Unit tests help us avoid errors and mistakes, and design our code without the need to worry about whether we made a mistake that will not be detected early on. Detecting issues in our code early has lower...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete