Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Python Feature Engineering Cookbook
  • Table Of Contents Toc
  • Feedback & Rating feedback
Python Feature Engineering Cookbook

Python Feature Engineering Cookbook

By : Galli
3.6 (9)
close
close
Python Feature Engineering Cookbook

Python Feature Engineering Cookbook

3.6 (9)
By: Galli

Overview of this book

Feature engineering is invaluable for developing and enriching your machine learning models. In this cookbook, you will work with the best tools to streamline your feature engineering pipelines and techniques and simplify and improve the quality of your code. Using Python libraries such as pandas, scikit-learn, Featuretools, and Feature-engine, you’ll learn how to work with both continuous and discrete datasets and be able to transform features from unstructured datasets. You will develop the skills necessary to select the best features as well as the most suitable extraction techniques. This book will cover Python recipes that will help you automate feature engineering to simplify complex processes. You’ll also get to grips with different feature engineering strategies, such as the box-cox transform, power transform, and log transform across machine learning, reinforcement learning, and natural language processing (NLP) domains. By the end of this book, you’ll have discovered tips and practical solutions to all of your feature engineering problems.
Table of Contents (13 chapters)
close
close

Removing observations with missing data

Complete Case Analysis (CCA), also called list-wise deletion of cases, consists of discarding those observations where the values in any of the variables are missing. CCA can be applied to categorical and numerical variables. CCA is quick and easy to implement and has the advantage that it preserves the distribution of the variables, provided the data is missing at random and only a small proportion of the data is missing. However, if data is missing across many variables, CCA may lead to the removal of a big portion of the dataset.

How to do it...

Let's begin by loading pandas and the dataset:

  1. First, we'll import the pandas library:
import pandas...

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY