Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Python Feature Engineering Cookbook
  • Toc
  • feedback
Python Feature Engineering Cookbook

Python Feature Engineering Cookbook

By : Galli
3.6 (9)
close
Python Feature Engineering Cookbook

Python Feature Engineering Cookbook

3.6 (9)
By: Galli

Overview of this book

Feature engineering is invaluable for developing and enriching your machine learning models. In this cookbook, you will work with the best tools to streamline your feature engineering pipelines and techniques and simplify and improve the quality of your code. Using Python libraries such as pandas, scikit-learn, Featuretools, and Feature-engine, you’ll learn how to work with both continuous and discrete datasets and be able to transform features from unstructured datasets. You will develop the skills necessary to select the best features as well as the most suitable extraction techniques. This book will cover Python recipes that will help you automate feature engineering to simplify complex processes. You’ll also get to grips with different feature engineering strategies, such as the box-cox transform, power transform, and log transform across machine learning, reinforcement learning, and natural language processing (NLP) domains. By the end of this book, you’ll have discovered tips and practical solutions to all of your feature engineering problems.
Table of Contents (13 chapters)
close

Technical requirements

We will use the following Python libraries: pandas, Matplotlib, and scikit-learn, which you can get by installing the Python Anaconda distribution, following the steps described in the Technical requirements section in Chapter 1, Foreseeing Variable Problems in Building ML Models.

We will also use NLTK from Python, a comprehensive library for NLP and text analysis. You can find instructions to install NLTK here: http://www.nltk.org/install.html. If you are using the Python Anaconda distribution, follow these instructions to install NLTK: https://anaconda.org/anaconda/nltk.

After you install NLTK, open up a Python console and execute the following:

import nltk
nltk.download('punkt')
nltk.download('stopwords')

Those commands will download the necessary data to be able to run the recipes of this chapter successfully...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete