Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Python Feature Engineering Cookbook
  • Table Of Contents Toc
  • Feedback & Rating feedback
Python Feature Engineering Cookbook

Python Feature Engineering Cookbook

By : Galli
3.6 (9)
close
close
Python Feature Engineering Cookbook

Python Feature Engineering Cookbook

3.6 (9)
By: Galli

Overview of this book

Feature engineering is invaluable for developing and enriching your machine learning models. In this cookbook, you will work with the best tools to streamline your feature engineering pipelines and techniques and simplify and improve the quality of your code. Using Python libraries such as pandas, scikit-learn, Featuretools, and Feature-engine, you’ll learn how to work with both continuous and discrete datasets and be able to transform features from unstructured datasets. You will develop the skills necessary to select the best features as well as the most suitable extraction techniques. This book will cover Python recipes that will help you automate feature engineering to simplify complex processes. You’ll also get to grips with different feature engineering strategies, such as the box-cox transform, power transform, and log transform across machine learning, reinforcement learning, and natural language processing (NLP) domains. By the end of this book, you’ll have discovered tips and practical solutions to all of your feature engineering problems.
Table of Contents (13 chapters)
close
close

Extracting Features from Text Variables

Text can be part of the variables in our datasets. For example, in insurance, some variables that capture information about an incident may come from a free text field in a form. In data from a website that collects customer reviews or feedback, we may also encounter variables that contain short descriptions provided by text that has been entered manually by the users. Text is unstructured, that is, it does not follow a pattern, like the tabular pattern of the datasets we have worked with throughout this book. Text may also vary in length and content, and the writing style may be different. How can we extract information from text variables to inform our predictive models? This is the question we are going to address in this chapter.

The techniques we will cover in this chapter belong to the realm of Natural Language Processing (NLP...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY