Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • OpenCV 4 Computer Vision Application Programming Cookbook
  • Toc
  • feedback
OpenCV 4 Computer Vision Application Programming Cookbook

OpenCV 4 Computer Vision Application Programming Cookbook

By : Millán Escrivá, Robert Laganiere
5 (1)
close
OpenCV 4 Computer Vision Application Programming Cookbook

OpenCV 4 Computer Vision Application Programming Cookbook

5 (1)
By: Millán Escrivá, Robert Laganiere

Overview of this book

OpenCV is an image and video processing library used for all types of image and video analysis. Throughout the book, you'll work with recipes to implement a variety of tasks. With 70 self-contained tutorials, this book examines common pain points and best practices for computer vision (CV) developers. Each recipe addresses a specific problem and offers a proven, best-practice solution with insights into how it works, so that you can copy the code and configuration files and modify them to suit your needs. This book begins by guiding you through setting up OpenCV, and explaining how to manipulate pixels. You'll understand how you can process images with classes and count pixels with histograms. You'll also learn detecting, describing, and matching interest points. As you advance through the chapters, you'll get to grips with estimating projective relations in images, reconstructing 3D scenes, processing video sequences, and tracking visual motion. In the final chapters, you'll cover deep learning concepts such as face and object detection. By the end of this book, you'll have the skills you need to confidently implement a range of computer vision algorithms to meet the technical requirements of your complex CV projects.
Table of Contents (17 chapters)
close

Describing keypoints with binary features

In the previous recipe, we learned how to describe a keypoint using rich descriptors extracted from the image intensity gradient. These descriptors are floating-point vectors that have a dimension of 64, 128, or sometimes even longer. This makes them costly to manipulate. In order to reduce the memory and computational load associated with these descriptors, the idea of using binary descriptors has been recently introduced. The challenge here is to make them easy to compute and yet keep them robust to scene and viewpoint changes. This recipe describes some of these binary descriptors. In particular, we will look at the ORB (short for Oriented FAST and Rotated BRIEF) and BRISK (short for Binary Robust Invariant Scalable Keypoints) descriptors for which we presented their associated feature point detectors in Chapter 8, Detecting Interest...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete