FAST has been introduced as a quick way to detect keypoints in an image. With SURF and SIFT, the emphasis was on designing scale-invariant features. More recently, new interest point detectors have been introduced with the objective of achieving both fast detection and invariance-to-scale changes. This recipe presents the Binary Robust Invariant Scalable Keypoints (BRISK) detector. It is based on the FAST feature detector that we described in a previous recipe of this chapter. Another detector, called ORB (Oriented FAST and Rotated BRIEF), will also be discussed at the end of this recipe. These two feature point detectors constitute an excellent solution when fast and reliable image matching is required. They are especially efficient when they are used in conjunction with their associated binary descriptors, as will be discussed in Chapter...

OpenCV 4 Computer Vision Application Programming Cookbook
By :

OpenCV 4 Computer Vision Application Programming Cookbook
By:
Overview of this book
OpenCV is an image and video processing library used for all types of image and video analysis. Throughout the book, you'll work with recipes to implement a variety of tasks. With 70 self-contained tutorials, this book examines common pain points and best practices for computer vision (CV) developers. Each recipe addresses a specific problem and offers a proven, best-practice solution with insights into how it works, so that you can copy the code and configuration files and modify them to suit your needs.
This book begins by guiding you through setting up OpenCV, and explaining how to manipulate pixels. You'll understand how you can process images with classes and count pixels with histograms. You'll also learn detecting, describing, and matching interest points. As you advance through the chapters, you'll get to grips with estimating projective relations in images, reconstructing 3D scenes, processing video sequences, and tracking visual motion. In the final chapters, you'll cover deep learning concepts such as face and object detection.
By the end of this book, you'll have the skills you need to confidently implement a range of computer vision algorithms to meet the technical requirements of your complex CV projects.
Table of Contents (17 chapters)
Preface
Playing with Images
Manipulating the Pixels
Processing Color Images with Classes
Counting the Pixels with Histograms
Transforming Images with Morphological Operations
Filtering the Images
Extracting Lines, Contours, and Components
Detecting Interest Points
Describing and Matching Interest Points
Estimating Projective Relations in Images
Reconstructing 3D Scenes
Processing Video Sequences
Tracking Visual Motion
Learning from Examples
OpenCV Advanced Features
Other Books You May Enjoy
How would like to rate this book
Customer Reviews