Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • OpenCV 4 Computer Vision Application Programming Cookbook
  • Toc
  • feedback
OpenCV 4 Computer Vision Application Programming Cookbook

OpenCV 4 Computer Vision Application Programming Cookbook

By : Millán Escrivá, Robert Laganiere
5 (1)
close
OpenCV 4 Computer Vision Application Programming Cookbook

OpenCV 4 Computer Vision Application Programming Cookbook

5 (1)
By: Millán Escrivá, Robert Laganiere

Overview of this book

OpenCV is an image and video processing library used for all types of image and video analysis. Throughout the book, you'll work with recipes to implement a variety of tasks. With 70 self-contained tutorials, this book examines common pain points and best practices for computer vision (CV) developers. Each recipe addresses a specific problem and offers a proven, best-practice solution with insights into how it works, so that you can copy the code and configuration files and modify them to suit your needs. This book begins by guiding you through setting up OpenCV, and explaining how to manipulate pixels. You'll understand how you can process images with classes and count pixels with histograms. You'll also learn detecting, describing, and matching interest points. As you advance through the chapters, you'll get to grips with estimating projective relations in images, reconstructing 3D scenes, processing video sequences, and tracking visual motion. In the final chapters, you'll cover deep learning concepts such as face and object detection. By the end of this book, you'll have the skills you need to confidently implement a range of computer vision algorithms to meet the technical requirements of your complex CV projects.
Table of Contents (17 chapters)
close

Extracting the foreground objects in a video

When a fixed camera observes a scene, the background remains mostly unchanged. In this case, the interesting elements are the moving objects that evolve inside this scene. In order to extract these foreground objects, we need to build a model of the background, and then compare this model with a current frame in order to detect any foreground objects. This is what we will do in this recipe. Foreground extraction is a fundamental step in intelligent surveillance applications.

If we had an image of the background of the scene (that is, a frame that contains no foreground objects) at our disposal, then it would be easy to extract the foreground of a current frame through a simple image difference:

  // compute difference between current image and background 
  cv::absdiff(backgroundImage,currentImage,foreground); 

Each pixel for which...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete