Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Deep Learning for Games
  • Toc
  • feedback
Hands-On Deep Learning for Games

Hands-On Deep Learning for Games

By : Micheal Lanham
3 (2)
close
Hands-On Deep Learning for Games

Hands-On Deep Learning for Games

3 (2)
By: Micheal Lanham

Overview of this book

The number of applications of deep learning and neural networks has multiplied in the last couple of years. Neural nets has enabled significant breakthroughs in everything from computer vision, voice generation, voice recognition and self-driving cars. Game development is also a key area where these techniques are being applied. This book will give an in depth view of the potential of deep learning and neural networks in game development. We will take a look at the foundations of multi-layer perceptron’s to using convolutional and recurrent networks. In applications from GANs that create music or textures to self-driving cars and chatbots. Then we introduce deep reinforcement learning through the multi-armed bandit problem and other OpenAI Gym environments. As we progress through the book we will gain insights about DRL techniques such as Motivated Reinforcement Learning with Curiosity and Curriculum Learning. We also take a closer look at deep reinforcement learning and in particular the Unity ML-Agents toolkit. By the end of the book, we will look at how to apply DRL and the ML-Agents toolkit to enhance, test and automate your games or simulations. Finally, we will cover your possible next steps and possible areas for future learning.
Table of Contents (18 chapters)
close
Free Chapter
1
Section 1: The Basics
6
Section 2: Deep Reinforcement Learning
14
Section 3: Building Games

TensorFlow Basics

TensorFlow (TF) is quickly becoming the technology that powers many DL applications. There are other APIs, such as Theano, but it is the one that has gathered the greatest interest and mostly applies to us. Overarching frameworks, such as Keras, offer the ability to deploy TF or Theano models, for instance. This is great for prototyping and building a quick proof of concept, but, as a game developer, you know that when it comes to games, the dominant requirements are always performance and control. TF provides better performance and more control than any higher-level framework such as Keras. In other words, to be a serious DL developer, you likely need and want to learn TF.

TF, as its name suggests, is all about tensors. A tensor is a mathematical concept that describes a set of data organized in n dimensions, where n could be 1, 2 x 2, 4 x 4 x 4, and so on...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete