Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Machine Learning with scikit-learn
  • Table Of Contents Toc
  • Feedback & Rating feedback
Mastering Machine Learning with scikit-learn

Mastering Machine Learning with scikit-learn

By : Gavin Hackeling
5 (2)
close
close
Mastering Machine Learning with scikit-learn

Mastering Machine Learning with scikit-learn

5 (2)
By: Gavin Hackeling

Overview of this book

Machine learning is the buzzword bringing computer science and statistics together to build smart and efficient models. Using powerful algorithms and techniques offered by machine learning you can automate any analytical model. This book examines a variety of machine learning models including popular machine learning algorithms such as k-nearest neighbors, logistic regression, naive Bayes, k-means, decision trees, and artificial neural networks. It discusses data preprocessing, hyperparameter optimization, and ensemble methods. You will build systems that classify documents, recognize images, detect ads, and more. You will learn to use scikit-learn’s API to extract features from categorical variables, text and images; evaluate model performance, and develop an intuition for how to improve your model’s performance. By the end of this book, you will master all required concepts of scikit-learn to build efficient models at work to carry out advanced tasks with the practical approach.
Table of Contents (15 chapters)
close
close
9
From Decision Trees to Random Forests and Other Ensemble Methods

What this book covers

Chapter 1, The Fundamentals of Machine Learning, defines machine learning as the study and design of programs that improve their performance of a task by learning from experience. This definition guides the other chapters; in each, we will examine a machine learning model, apply it to a task, and measure its performance.

Chapter 2, Simple Linear Regression, discusses a model that relates a single feature to a continuous response variable. We will learn about cost functions and use the normal equation to optimize the model.

Chapter 3, Classification and Regression with K-Nearest Neighbors, introduces a simple, nonlinear model for classification and regression tasks.

Chapter 4, Feature Extraction, describes methods for representing text, images, and categorical variables as features that can be used in machine learning models.

Chapter 5, From Simple Linear Regression to Multiple Linear Regression, discusses a generalization of simple linear regression that regresses a continuous response variable onto multiple features.

Chapter 6, From Linear Regression to Logistic Regression, further generalizes multiple linear regression and introduces a model for binary classification tasks.

Chapter 7, Naive Bayes, discusses Bayes’ theorem and the Naive Bayes family of classifiers, and compares generative and discriminative models.

Chapter 8, Nonlinear Classification and Regression with Decision Trees, introduces the decision tree, a simple, nonlinear model for classification and regression tasks.

Chapter 9, From Decision Trees to Random Forests and other Ensemble Methods, discusses three methods for combining models called bagging, boosting, and stacking.

Chapter 10, The Perceptron, introduces a simple online model for binary classification.

Chapter 11, From the Perceptron to Support Vector Machines, discusses a powerful, discriminative model for classification and regression called the support vector machine, and a technique for efficiently projecting features to higher dimensional spaces.

Chapter 12, From the Perceptron to Artificial Neural Networks, introduces powerful nonlinear models for classification and regression built from graphs of artificial neurons.

Chapter 13,  K-means, discusses an algorithm that can be used to find structures in unlabeled data.

Chapter 14, Dimensionality Reduction with Principal Component Analysis, describes a method for reducing the dimensions of data that can mitigate the curse of dimensionality.

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY