Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Machine Learning with scikit-learn
  • Table Of Contents Toc
  • Feedback & Rating feedback
Mastering Machine Learning with scikit-learn

Mastering Machine Learning with scikit-learn

By : Gavin Hackeling
5 (2)
close
close
Mastering Machine Learning with scikit-learn

Mastering Machine Learning with scikit-learn

5 (2)
By: Gavin Hackeling

Overview of this book

Machine learning is the buzzword bringing computer science and statistics together to build smart and efficient models. Using powerful algorithms and techniques offered by machine learning you can automate any analytical model. This book examines a variety of machine learning models including popular machine learning algorithms such as k-nearest neighbors, logistic regression, naive Bayes, k-means, decision trees, and artificial neural networks. It discusses data preprocessing, hyperparameter optimization, and ensemble methods. You will build systems that classify documents, recognize images, detect ads, and more. You will learn to use scikit-learn’s API to extract features from categorical variables, text and images; evaluate model performance, and develop an intuition for how to improve your model’s performance. By the end of this book, you will master all required concepts of scikit-learn to build efficient models at work to carry out advanced tasks with the practical approach.
Table of Contents (15 chapters)
close
close
9
From Decision Trees to Random Forests and Other Ensemble Methods

Face recognition with PCA

Now let's apply PCA to a face recognition problem. Face recognition is the supervised classification task of identifying a person from an image of his or her face. In this example, we will use a dataset called Our Database of Faces from AT&T Laboratories Cambridge. The dataset contains 10 images of each of 40 people. The images were created under different lighting conditions, and the subjects varied their facial expressions. The images are grayscale and in pixels. The following is an example image:

While these images are small, a feature vector that encodes the intensity of every pixel will have 10,304 dimensions. Training from such high-dimensional data could require many samples to avoid overfitting. Instead, we will use PCA to compactly represent the images in terms of a small number of principal components. We can reshape the matrix of...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY