Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Machine Learning with scikit-learn
  • Table Of Contents Toc
  • Feedback & Rating feedback
Mastering Machine Learning with scikit-learn

Mastering Machine Learning with scikit-learn

By : Gavin Hackeling
5 (2)
close
close
Mastering Machine Learning with scikit-learn

Mastering Machine Learning with scikit-learn

5 (2)
By: Gavin Hackeling

Overview of this book

Machine learning is the buzzword bringing computer science and statistics together to build smart and efficient models. Using powerful algorithms and techniques offered by machine learning you can automate any analytical model. This book examines a variety of machine learning models including popular machine learning algorithms such as k-nearest neighbors, logistic regression, naive Bayes, k-means, decision trees, and artificial neural networks. It discusses data preprocessing, hyperparameter optimization, and ensemble methods. You will build systems that classify documents, recognize images, detect ads, and more. You will learn to use scikit-learn’s API to extract features from categorical variables, text and images; evaluate model performance, and develop an intuition for how to improve your model’s performance. By the end of this book, you will master all required concepts of scikit-learn to build efficient models at work to carry out advanced tasks with the practical approach.
Table of Contents (15 chapters)
close
close
9
From Decision Trees to Random Forests and Other Ensemble Methods

Summary

In this chapter, we defined machine learning as the design of programs that can improve their performance at a task by learning from experience. We discussed the spectrum of supervision in experience. At one end is supervised learning, in which a program learns from inputs that are labeled with their corresponding outputs. Unsupervised learning, in which the program must discover structure in only unlabeled inputs, is at the opposite end of the spectrum. Semi-supervised approaches make use of both labeled and unlabeled training data.

Next we discussed common types of machine learning tasks and reviewed examples of each. In classification tasks the program predict the value of a discrete response variable from the observed explanatory variables. In regression tasks the program must predict the value of a continuous response variable from the explanatory variables. Unsupervised learning tasks include clustering, in which observations are organized into groups according to some similarity measure, and dimensionality reduction, which reduces a set of explanatory variables to a smaller set of synthetic features that retain as much information as possible. We also reviewed the bias-variance trade-off and discussed common performance measures for different machine learning tasks.

In this chapter we discussed the history, goals, and advantages of scikit-learn. Finally, we prepared our development environment by installing scikit-learn and other libraries that are commonly used in conjunction with it. In the next chapter we will discuss a simple model for regression tasks, and build our first machine learning model with scikit-learn.

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY