Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Machine Learning with scikit-learn
  • Table Of Contents Toc
  • Feedback & Rating feedback
Mastering Machine Learning with scikit-learn

Mastering Machine Learning with scikit-learn

By : Gavin Hackeling
5 (2)
close
close
Mastering Machine Learning with scikit-learn

Mastering Machine Learning with scikit-learn

5 (2)
By: Gavin Hackeling

Overview of this book

Machine learning is the buzzword bringing computer science and statistics together to build smart and efficient models. Using powerful algorithms and techniques offered by machine learning you can automate any analytical model. This book examines a variety of machine learning models including popular machine learning algorithms such as k-nearest neighbors, logistic regression, naive Bayes, k-means, decision trees, and artificial neural networks. It discusses data preprocessing, hyperparameter optimization, and ensemble methods. You will build systems that classify documents, recognize images, detect ads, and more. You will learn to use scikit-learn’s API to extract features from categorical variables, text and images; evaluate model performance, and develop an intuition for how to improve your model’s performance. By the end of this book, you will master all required concepts of scikit-learn to build efficient models at work to carry out advanced tasks with the practical approach.
Table of Contents (15 chapters)
close
close
9
From Decision Trees to Random Forests and Other Ensemble Methods

Summary

In this chapter, we discussed the perceptron. Inspired by neurons, the perceptron is linear model for binary classification. The perceptron classifies instances by processing a linear combination of features and weights with an activation function. While a perceptron with a logistic sigmoid activation function is the same model as logistic regression, the perceptron learns its weights using an online, error-driven algorithm. The perceptron can be used effectively in some problems. Like the other linear classifiers that we have discussed, the perceptron separates the instances of positive and negative classes using a hyperplane. Some datasets are not linearly separable; that is, no possible hyperplane can classify all the instances correctly.

In the following chapters, we will discuss two models that can be used with linearly inseparable data: ANN, which creates a universal...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY