Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Machine Learning with R
  • Table Of Contents Toc
  • Feedback & Rating feedback
Machine Learning with R

Machine Learning with R

By : Brett Lantz
4.2 (46)
close
close
Machine Learning with R

Machine Learning with R

4.2 (46)
By: Brett Lantz

Overview of this book

Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data. Machine Learning with R, Third Edition provides a hands-on, readable guide to applying machine learning to real-world problems. Whether you are an experienced R user or new to the language, Brett Lantz teaches you everything you need to uncover key insights, make new predictions, and visualize your findings. This new 3rd edition updates the classic R data science book to R 3.6 with newer and better libraries, advice on ethical and bias issues in machine learning, and an introduction to deep learning. Find powerful new insights in your data; discover machine learning with R.
Table of Contents (16 chapters)
close
close
13
Other Books You May Enjoy
14
Leave a review - let other readers know what you think
15
Index

Understanding classification rules

Classification rules represent knowledge in the form of logical if-else statements that assign a class to unlabeled examples. They are specified in terms of an antecedent and a consequent, which form a statement that says "if this happens, then that happens." The antecedent comprises certain combinations of feature values, while the consequent specifies the class value to assign if the rule's conditions are met. A simple rule might state, "if the hard drive is making a clicking sound, then it is about to fail."

Rule learners are a closely related sibling of decision tree learners and are often used for similar types of tasks. Like decision trees, they can be used for applications that generate knowledge for future action, such as:

  • Identifying conditions that lead to hardware failure in mechanical devices
  • Describing the key characteristics of groups of people for customer segmentation
  • Finding conditions that precede large drops...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY