Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Machine Learning with R
  • Toc
  • feedback
Machine Learning with R

Machine Learning with R

By : Brett Lantz
4.2 (46)
close
Machine Learning with R

Machine Learning with R

4.2 (46)
By: Brett Lantz

Overview of this book

Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data. Machine Learning with R, Third Edition provides a hands-on, readable guide to applying machine learning to real-world problems. Whether you are an experienced R user or new to the language, Brett Lantz teaches you everything you need to uncover key insights, make new predictions, and visualize your findings. This new 3rd edition updates the classic R data science book to R 3.6 with newer and better libraries, advice on ethical and bias issues in machine learning, and an introduction to deep learning. Find powerful new insights in your data; discover machine learning with R.
Table of Contents (16 chapters)
close
13
Other Books You May Enjoy
14
Leave a review - let other readers know what you think
15
Index

Example – filtering mobile phone spam with the Naive Bayes algorithm

As the worldwide use of mobile phones has grown, a new avenue for electronic junk mail has opened for disreputable marketers. These advertisers utilize short message service (SMS) text messages to target potential consumers with unwanted advertising known as SMS spam. This type of spam is troublesome because, unlike email spam, an SMS message is particularly disruptive, due to the omnipresence of one's mobile phone. Developing a classification algorithm that could filter SMS spam would provide a useful tool for cellular phone providers.

Since Naive Bayes has been used successfully for email spam filtering, it seems likely that it could also be applied to SMS spam. However, relative to email spam, SMS spam poses additional challenges for automated filters. SMS messages are often limited to 160 characters, reducing the amount of text that can be used to identify whether a message is junk. The limit...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete