Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Machine Learning with R
  • Toc
  • feedback
Machine Learning with R

Machine Learning with R

By : Brett Lantz
4.2 (46)
close
Machine Learning with R

Machine Learning with R

4.2 (46)
By: Brett Lantz

Overview of this book

Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data. Machine Learning with R, Third Edition provides a hands-on, readable guide to applying machine learning to real-world problems. Whether you are an experienced R user or new to the language, Brett Lantz teaches you everything you need to uncover key insights, make new predictions, and visualize your findings. This new 3rd edition updates the classic R data science book to R 3.6 with newer and better libraries, advice on ethical and bias issues in machine learning, and an introduction to deep learning. Find powerful new insights in your data; discover machine learning with R.
Table of Contents (16 chapters)
close
13
Other Books You May Enjoy
14
Leave a review - let other readers know what you think
15
Index

Estimating future performance

Some R machine learning packages present confusion matrices and performance measures during the model-building process. The purpose of these statistics is to provide insight about the model's resubstitution error, which occurs when the training data is incorrectly predicted in spite of the model being built directly from this data. This information can be used as a rough diagnostic to identify obviously poor performers.

The resubstitution error is not a very useful marker of future performance, however. For example, a model that used rote memorization to perfectly classify every training instance with zero resubstitution error would be unable to generalize its predictions to data it has never seen before. For this reason, the error rate on the training data can be extremely optimistic about a model's future performance.

Instead of relying on resubstitution error, a better practice is to evaluate a model's performance on data it has not yet...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete