Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Machine Learning with R
  • Toc
  • feedback
Machine Learning with R

Machine Learning with R

By : Brett Lantz
4.2 (46)
close
Machine Learning with R

Machine Learning with R

4.2 (46)
By: Brett Lantz

Overview of this book

Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data. Machine Learning with R, Third Edition provides a hands-on, readable guide to applying machine learning to real-world problems. Whether you are an experienced R user or new to the language, Brett Lantz teaches you everything you need to uncover key insights, make new predictions, and visualize your findings. This new 3rd edition updates the classic R data science book to R 3.6 with newer and better libraries, advice on ethical and bias issues in machine learning, and an introduction to deep learning. Find powerful new insights in your data; discover machine learning with R.
Table of Contents (16 chapters)
close
13
Other Books You May Enjoy
14
Leave a review - let other readers know what you think
15
Index

Summary

In this chapter, we learned about classification using Naive Bayes. This algorithm constructs tables of probabilities that are used to estimate the likelihood that new examples belong to various classes. The probabilities are calculated using a formula known as Bayes' theorem, which specifies how dependent events are related. Although Bayes' theorem can be computationally expensive, a simplified version that makes so-called "naive" assumptions about the independence of features is capable of handling much larger datasets.

The Naive Bayes classifier is often used for text classification. To illustrate its effectiveness, we employed Naive Bayes on a classification task involving spam SMS messages. Preparing the text data for analysis required the use of specialized R packages for text processing and visualization. Ultimately, the model was able to classify over 97 percent of all the SMS messages correctly as spam or ham.

In the next chapter, we will examine...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete