Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Deep Learning with Keras
  • Toc
  • feedback
Deep Learning with Keras

Deep Learning with Keras

By : Antonio Gulli , Sujit Pal
3.5 (20)
close
Deep Learning with Keras

Deep Learning with Keras

3.5 (20)
By: Antonio Gulli , Sujit Pal

Overview of this book

This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of handwritten digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GANs). You will also explore non-traditional uses of neural networks as Style Transfer. Finally, you will look at reinforcement learning and its application to AI game playing, another popular direction of research and application of neural networks.
Table of Contents (10 chapters)
close

What this book covers

Chapter 1, Neural Networks Foundations, teaches the basics of neural networks.

Chapter 2, Keras Installation and API, shows how to install Keras on AWS, Microsoft Azure, Google Cloud, and your own machine. In addition to that, we provide an overview of the Keras APIs.

Chapter 3, Deep Learning with ConvNets, introduces the concept of convolutional networks. It is a fundamental innovation in deep learning that has been used with success in multiple domains, from text to video to speech, going well beyond the initial image processing domain where it was originally conceived.

Chapter 4, Generative Adversarial Networks and WaveNet, introduces generative adversarial networks used to reproduce synthetic data that looks like data generated by humans. And we will present WaveNet, a deep neural network used for reproducing human voice and musical instruments with high quality.

Chapter 5, Word Embeddings, discusses word embeddings, a set of deep learning methodologies for detecting relationships between words and grouping together similar words.

Chapter 6, Recurrent Neural Networks – RNN, covers recurrent neural networks, a class of network optimized for handling sequence data such as text.

Chapter 7, Additional Deep Learning Models, gives a brief look into the Keras functional API, regression networks, autoencoders, and so on.

Chapter 8, AI Game Playing, teaches you deep reinforcement learning and how it can be used to build deep learning networks with Keras that learn how to play arcade games based on reward feedback.

Appendix, Conclusion, is a crisp refresher of the topics covered in this book and walks the users through what is new in Keras 2.0.

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete