Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Deep Learning with Keras
  • Toc
  • feedback
Deep Learning with Keras

Deep Learning with Keras

By : Antonio Gulli , Sujit Pal
3.5 (20)
close
Deep Learning with Keras

Deep Learning with Keras

3.5 (20)
By: Antonio Gulli , Sujit Pal

Overview of this book

This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of handwritten digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GANs). You will also explore non-traditional uses of neural networks as Style Transfer. Finally, you will look at reinforcement learning and its application to AI game playing, another popular direction of research and application of neural networks.
Table of Contents (10 chapters)
close

How deep learning is different from machine learning and artificial intelligence

Artificial intelligence (AI) is a very large research field, where machines show cognitive capabilities such as learning behaviours, proactive interaction with the environment, inference and deduction, computer vision, speech recognition, problem solving, knowledge representation, perception, and many others (for more information, refer to this article: Artificial Intelligence: A Modern Approach, by S. Russell and P. Norvig, Prentice Hall, 2003). More colloquially, AI denotes any activity where machines mimic intelligent behaviors typically shown by humans. Artificial intelligence takes inspiration from elements of computer science, mathematics, and statistics.

Machine learning (ML) is a subbranch of AI that focuses on teaching computers how to learn without the need to be programmed for specific tasks (for more information refer to Pattern Recognition and Machine Learning, by C. M. Bishop, Springer, 2006). In fact, the key idea behind ML is that it is possible to create algorithms that learn from and make predictions on data. There are three different broad categories of ML. In supervised learning, the machine is presented with input data and desired output, and the goal is to learn from those training examples in such a way that meaningful predictions can be made for fresh unseen data. In unsupervised learning, the machine is presented with input data only and the machine has to find some meaningful structure by itself with no external supervision. In reinforcement learning, the machine acts as an agent interacting with the environment and learning what are the behaviours that generate rewards.

Deep learning (DL) is a particular subset of ML methodologies using artificial neural networks (ANN) slightly inspired by the structure of neurons located in the human brain (for more information, refer to the article Learning Deep Architectures for AI, by Y. Bengio, Found. Trends, vol. 2, 2009). Informally, the word deep refers to the presence of many layers in the artificial neural network, but this meaning has changed over time. While 4 years ago, 10 layers were already sufficient to consider a network as deep, today it is more common to consider a network as deep when it has hundreds of layers.

DL is a real tsunami (for more information, refer to Computational Linguistics and Deep Learning by C. D. Manning, "Computational Linguistics", vol. 41, 2015) for machine learning in that a relatively small number of clever methodologies have been very successfully applied to so many different domains (image, text, video, speech, and vision), significantly improving previous state-of-the-art results achieved over dozens of years. The success of DL is also due to the availability of more training data (such as ImageNet for images) and the relatively low-cost availability of GPUs for very efficient numerical computation. Google, Microsoft, Amazon, Apple, Facebook, and many others use those deep learning techniques every day for analyzing massive amounts of data. However, this kind of expertise is not limited any more to the domain of pure academic research and to large industrial companies. It has become an integral part of modern software production and therefore something that the reader should definitively master. The book does not require any particular mathematical background. However, it assumes that the reader is already a Python programmer.

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete