Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Deep Learning with Keras
  • Table Of Contents Toc
  • Feedback & Rating feedback
Deep Learning with Keras

Deep Learning with Keras

By : Antonio Gulli , Sujit Pal
3.5 (20)
close
close
Deep Learning with Keras

Deep Learning with Keras

3.5 (20)
By: Antonio Gulli , Sujit Pal

Overview of this book

This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of handwritten digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GANs). You will also explore non-traditional uses of neural networks as Style Transfer. Finally, you will look at reinforcement learning and its application to AI game playing, another popular direction of research and application of neural networks.
Table of Contents (10 chapters)
close
close

Keras adversarial GANs for forging CIFAR

Now we can use a GAN approach to learn how to forge CIFAR-10 and create synthetic images that look real. Let's see the open source code (https://github.com/bstriner/keras-adversarial/blob/master/examples/example_gan_cifar10.py).  Again, note that it uses the syntax of Keras 1.x, but it also runs on the top of Keras 2.x thanks to a convenient set of utility functions contained in legacy.py (https://github.com/bstriner/keras-adversarial/blob/master/keras_adversarial/legacy.py). First, the open source example imports a number of packages:

import matplotlib as mpl
# This line allows mpl to run with no DISPLAY defined
mpl.use('Agg')
import pandas as pd
import numpy as np
import os
from keras.layers import Dense, Reshape, Flatten, Dropout, LeakyReLU,
Activation, BatchNormalization, SpatialDropout2D
from keras.layers.convolutional import Convolution2D, UpSampling2D...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY