Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Machine Learning with Swift
  • Table Of Contents Toc
  • Feedback & Rating feedback
Machine Learning with Swift

Machine Learning with Swift

By : Alexander Sosnovshchenko , Jojo Moolayil, Oleksandr Baiev
3 (1)
close
close
Machine Learning with Swift

Machine Learning with Swift

3 (1)
By: Alexander Sosnovshchenko , Jojo Moolayil, Oleksandr Baiev

Overview of this book

Machine learning as a field promises to bring increased intelligence to the software by helping us learn and analyse information efficiently and discover certain patterns that humans cannot. This book will be your guide as you embark on an exciting journey in machine learning using the popular Swift language. We’ll start with machine learning basics in the first part of the book to develop a lasting intuition about fundamental machine learning concepts. We explore various supervised and unsupervised statistical learning techniques and how to implement them in Swift, while the third section walks you through deep learning techniques with the help of typical real-world cases. In the last section, we will dive into some hard core topics such as model compression, GPU acceleration and provide some recommendations to avoid common mistakes during machine learning application development. By the end of the book, you'll be able to develop intelligent applications written in Swift that can learn for themselves.
Table of Contents (14 chapters)
close
close

Predicting user intents


The problem: Apple's default Clock app, if opened from the app switcher menu (the one you see when swiping from the bottom of the screen upward), always shows the Timer tab. I personally use this app mostly for one reason every day—to set an alarm clock, which is in a different tab. By knowing the day of the week and time of the day, it's easy to make the app smarter (and less annoying) by opening the proper Alarm tab when needed and default tab otherwise. For this, we will need to collect historical records on what time we usually set an alarm on different days.

Let's formulate the task more precisely:

  • Input data: The day, hour, and minute when the user had opened the application
  • Expected output: The probability that the user wants to set up an alarm

The task is of binary classification, which makes logistic regression a perfect candidate for the solution.

Handling dates

The straightforward way to transform dates and time into numerical features is by replacing them with...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY