Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Machine Learning with Swift
  • Toc
  • feedback
Machine Learning with Swift

Machine Learning with Swift

By : Alexander Sosnovshchenko , Jojo Moolayil, Oleksandr Baiev
3 (1)
close
Machine Learning with Swift

Machine Learning with Swift

3 (1)
By: Alexander Sosnovshchenko , Jojo Moolayil, Oleksandr Baiev

Overview of this book

Machine learning as a field promises to bring increased intelligence to the software by helping us learn and analyse information efficiently and discover certain patterns that humans cannot. This book will be your guide as you embark on an exciting journey in machine learning using the popular Swift language. We’ll start with machine learning basics in the first part of the book to develop a lasting intuition about fundamental machine learning concepts. We explore various supervised and unsupervised statistical learning techniques and how to implement them in Swift, while the third section walks you through deep learning techniques with the help of typical real-world cases. In the last section, we will dive into some hard core topics such as model compression, GPU acceleration and provide some recommendations to avoid common mistakes during machine learning application development. By the end of the book, you'll be able to develop intelligent applications written in Swift that can learn for themselves.
Table of Contents (14 chapters)
close

Using instance-based models for classification and clustering


Instance-based machine learning algorithms are usually easy to understand as they have some geometrical intuition behind them. They can be used to perform different kinds of tasks, including classification, regression, clustering, and anomaly detection.

It's easy to confuse classification and clustering at first. Just to remind you, classification is one of the many types of supervised learning. The task is to predict some discrete label from the set of features (Figure 3.4, left pane). Technically, classification goes in two types: binary (check yes or no), and multiclass (yes/no/maybe/I don't know/can you repeat the question?). But in practice, you can always build a multiclass classifier from several binary classifiers.

On the other hand, clustering is the task of unsupervised learning. This means that, unlike classification, it knows nothing about data labels, and works out clusters of similar samples in your data on its own...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete