Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Machine Learning with Swift
  • Table Of Contents Toc
  • Feedback & Rating feedback
Machine Learning with Swift

Machine Learning with Swift

By : Alexander Sosnovshchenko , Jojo Moolayil, Oleksandr Baiev
3 (1)
close
close
Machine Learning with Swift

Machine Learning with Swift

3 (1)
By: Alexander Sosnovshchenko , Jojo Moolayil, Oleksandr Baiev

Overview of this book

Machine learning as a field promises to bring increased intelligence to the software by helping us learn and analyse information efficiently and discover certain patterns that humans cannot. This book will be your guide as you embark on an exciting journey in machine learning using the popular Swift language. We’ll start with machine learning basics in the first part of the book to develop a lasting intuition about fundamental machine learning concepts. We explore various supervised and unsupervised statistical learning techniques and how to implement them in Swift, while the third section walks you through deep learning techniques with the help of typical real-world cases. In the last section, we will dive into some hard core topics such as model compression, GPU acceleration and provide some recommendations to avoid common mistakes during machine learning application development. By the end of the book, you'll be able to develop intelligent applications written in Swift that can learn for themselves.
Table of Contents (14 chapters)
close
close

Summary

In this chapter, we learned about the main concepts in ML .

We discussed different definitions and subdomains of artificial intelligence, including ML . ML is the science and practice of extracting knowledge from data. We also explained the motivation behind ML . We had a brief overview of its application domains: digital signal processing, computer vision, and natural language processing.

We learned about the two core concepts in ML : the data, and the model. Your model is only as good as your data. A typical ML dataset consists of samples; each sample consists of features. There are many types of features and many techniques to extract useful information from the features. These techniques are known as feature engineering. For supervised learning tasks, dataset also includes label for each of the samples. We provided an overview of data collection and preprocessing.

Finally, we learned about three types of common ML tasks: supervised, unsupervised, and reinforcement learning. In the next chapter, we're going to build our first ML application.

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY