Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying TensorFlow Machine Learning Cookbook
  • Table Of Contents Toc
  • Feedback & Rating feedback
TensorFlow Machine Learning Cookbook

TensorFlow Machine Learning Cookbook

By : Nick McClure
3.7 (18)
close
close
TensorFlow Machine Learning Cookbook

TensorFlow Machine Learning Cookbook

3.7 (18)
By: Nick McClure

Overview of this book

TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and will let you dig deeper and gain more insights into your data than ever before. You’ll work through recipes on training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and deep learning – each using Google’s machine learning library TensorFlow. This guide starts with the fundamentals of the TensorFlow library which includes variables, matrices, and various data sources. Moving ahead, you will get hands-on experience with Linear Regression techniques with TensorFlow. The next chapters cover important high-level concepts such as neural networks, CNN, RNN, and NLP. Once you are familiar and comfortable with the TensorFlow ecosystem, the last chapter will show you how to take it to production.
Table of Contents (13 chapters)
close
close
12
Index

Introduction


Support vector machines are a method of binary classification. The basic idea is to find a linear separating line (or hyperplane) between the two classes. We first assume that the binary class targets are -1 or 1, instead of the prior 0 or 1 targets. Since there may be many lines that separate two classes, we define the best linear separator that maximizes the distance between both classes.

Figure 1: Given two separable classes, 'o' and 'x', we wish to find the equation for the linear separator between the two. The left shows that there are many lines that separate the two classes. The right shows the unique maximum margin line. The margin width is given by 2/. This line is found by minimizing the L2 norm of A.

We can write such a hyperplane as follows:

Here, A is a vector of our partial slopes and x is a vector of inputs. The width of the maximum margin can be shown to be two divided by the L2 norm of A. There are many proofs out there of this fact, but for a geometric idea, solving...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY