Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • TensorFlow Machine Learning Cookbook
  • Toc
  • feedback
TensorFlow Machine Learning Cookbook

TensorFlow Machine Learning Cookbook

By : Nick McClure
3.7 (18)
close
TensorFlow Machine Learning Cookbook

TensorFlow Machine Learning Cookbook

3.7 (18)
By: Nick McClure

Overview of this book

TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and will let you dig deeper and gain more insights into your data than ever before. You’ll work through recipes on training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and deep learning – each using Google’s machine learning library TensorFlow. This guide starts with the fundamentals of the TensorFlow library which includes variables, matrices, and various data sources. Moving ahead, you will get hands-on experience with Linear Regression techniques with TensorFlow. The next chapters cover important high-level concepts such as neural networks, CNN, RNN, and NLP. Once you are familiar and comfortable with the TensorFlow ecosystem, the last chapter will show you how to take it to production.
Table of Contents (13 chapters)
close
12
Index

Working with a Genetic Algorithm

TensorFlow can also be used to update any iterative algorithm that we can express in a computational graph. One such iterative algorithm is a genetic algorithm, an optimization procedure.

Getting ready

In this recipe, we will illustrate how to implement a simple genetic algorithm. Genetic algorithms are a way to optimize over any parameter space (discrete, continuous, smooth, non-smooth, and so on.). The idea is to create a population of randomly initialized solutions, and apply selection, recombination, and mutation to generate new (and potentially better) child solutions. The whole idea rests on the fact that we can calculate the 'fitness' of an individual solution by seeing how well that individual solves the problem.

Generally, the outline for a genetic algorithm is to start with a randomly initialized population, rank them in terms of their fitness, and select the top fit individuals to randomly recombine (or cross over) to create new child...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete