Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • TensorFlow Machine Learning Cookbook
  • Toc
  • feedback
TensorFlow Machine Learning Cookbook

TensorFlow Machine Learning Cookbook

By : Nick McClure
3.7 (18)
close
TensorFlow Machine Learning Cookbook

TensorFlow Machine Learning Cookbook

3.7 (18)
By: Nick McClure

Overview of this book

TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and will let you dig deeper and gain more insights into your data than ever before. You’ll work through recipes on training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and deep learning – each using Google’s machine learning library TensorFlow. This guide starts with the fundamentals of the TensorFlow library which includes variables, matrices, and various data sources. Moving ahead, you will get hands-on experience with Linear Regression techniques with TensorFlow. The next chapters cover important high-level concepts such as neural networks, CNN, RNN, and NLP. Once you are familiar and comfortable with the TensorFlow ecosystem, the last chapter will show you how to take it to production.
Table of Contents (13 chapters)
close
12
Index

Reduction to Linear Regression

Support vector machines can be used to fit linear regression. In this chapter, we will explore how to do this with TensorFlow.

Getting ready

The same maximum margin concept can be applied toward fitting linear regression. Instead of maximizing the margin that separates the classes, we can think about maximizing the margin that contains the most (x, y) points. To illustrate this, we will use the same iris data set, and show that we can use this concept to fit a line between sepal length and petal width.

The corresponding loss function will be similar to max Getting ready. Here, Getting ready is half of the width of the margin, which makes the loss equal to zero if a point lies in this region.

How to do it…

  1. First we load the necessary libraries, start a graph, and load the iris dataset. After that, we will split the dataset into train and test sets to visualize the loss on both. Use the following code:
    import matplotlib.pyplot as plt
    import numpy as np
    import tensorflow as tf
    from sklearn...
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete