Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • TensorFlow Machine Learning Cookbook
  • Toc
  • feedback
TensorFlow Machine Learning Cookbook

TensorFlow Machine Learning Cookbook

By : Nick McClure
3.7 (18)
close
TensorFlow Machine Learning Cookbook

TensorFlow Machine Learning Cookbook

3.7 (18)
By: Nick McClure

Overview of this book

TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and will let you dig deeper and gain more insights into your data than ever before. You’ll work through recipes on training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and deep learning – each using Google’s machine learning library TensorFlow. This guide starts with the fundamentals of the TensorFlow library which includes variables, matrices, and various data sources. Moving ahead, you will get hands-on experience with Linear Regression techniques with TensorFlow. The next chapters cover important high-level concepts such as neural networks, CNN, RNN, and NLP. Once you are familiar and comfortable with the TensorFlow ecosystem, the last chapter will show you how to take it to production.
Table of Contents (13 chapters)
close
12
Index

Implementing a Decomposition Method


For this recipe, we will implement a matrix decomposition method for linear regression. Specifically we will use the Cholesky decomposition, for which relevant functions exist in TensorFlow.

Getting ready

Implementing inverse methods in the previous recipe can be numerically inefficient in most cases, especially when the matrices get very large. Another approach is to decompose the A matrix and perform matrix operations on the decompositions instead. One such approach is to use the built-in Cholesky decomposition method in TensorFlow. One reason people are so interested in decomposing a matrix into more matrices is because the resulting matrices will have assured properties that allow us to use certain methods efficiently. The Cholesky decomposition decomposes a matrix into a lower and upper triangular matrix, say and , such that these matrices are transpositions of each other. For further information on the properties of this decomposition, there are many...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete