Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • OpenCV By Example
  • Toc
  • feedback
OpenCV By Example

OpenCV By Example

By : Joshi, Millán Escrivá, Vinícius G. Mendonça
3.8 (5)
close
OpenCV By Example

OpenCV By Example

3.8 (5)
By: Joshi, Millán Escrivá, Vinícius G. Mendonça

Overview of this book

Open CV is a cross-platform, free-for-use library that is primarily used for real-time Computer Vision and image processing. It is considered to be one of the best open source libraries that helps developers focus on constructing complete projects on image processing, motion detection, and image segmentation. Whether you are completely new to the concept of Computer Vision or have a basic understanding of it, this book will be your guide to understanding the basic OpenCV concepts and algorithms through amazing real-world examples and projects. Starting from the installation of OpenCV on your system and understanding the basics of image processing, we swiftly move on to creating optical flow video analysis or text recognition in complex scenes, and will take you through the commonly used Computer Vision techniques to build your own Open CV projects from scratch. By the end of this book, you will be familiar with the basics of Open CV such as matrix operations, filters, and histograms, as well as more advanced concepts such as segmentation, machine learning, complex video analysis, and text recognition.
Table of Contents (13 chapters)
close
12
Index

Building an interactive object tracker


A colorspace-based tracker gives us the freedom to track a colored object, but we are also constrained to a predefined color. What if we just want to randomly pick an object? How do we build an object tracker that can learn the characteristics of the selected object and track it automatically? This is where the CAMShift algorithm, which stands for Continuously Adaptive Meanshift, comes into the picture. It's basically an improved version of the Meanshift algorithm.

The concept of Meanshift is actually nice and simple. Let's say we select a region of interest, and we want our object tracker to track that object. In this region, we select a bunch of points based on the color histogram and compute the centroid of spatial points. If the centroid lies at the center of this region, we know that the object hasn't moved. But if the centroid is not at the center of this region, then we know that the object is moving in some direction. The movement of the centroid...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete