Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying OpenCV By Example
  • Table Of Contents Toc
  • Feedback & Rating feedback
OpenCV By Example

OpenCV By Example

By : Joshi, Millán Escrivá, Vinícius G. Mendonça
3.8 (5)
close
close
OpenCV By Example

OpenCV By Example

3.8 (5)
By: Joshi, Millán Escrivá, Vinícius G. Mendonça

Overview of this book

Open CV is a cross-platform, free-for-use library that is primarily used for real-time Computer Vision and image processing. It is considered to be one of the best open source libraries that helps developers focus on constructing complete projects on image processing, motion detection, and image segmentation. Whether you are completely new to the concept of Computer Vision or have a basic understanding of it, this book will be your guide to understanding the basic OpenCV concepts and algorithms through amazing real-world examples and projects. Starting from the installation of OpenCV on your system and understanding the basics of image processing, we swiftly move on to creating optical flow video analysis or text recognition in complex scenes, and will take you through the commonly used Computer Vision techniques to build your own Open CV projects from scratch. By the end of this book, you will be familiar with the basics of Open CV such as matrix operations, filters, and histograms, as well as more advanced concepts such as segmentation, machine learning, complex video analysis, and text recognition.
Table of Contents (13 chapters)
close
close
12
Index

Preprocessing the input image


This section introduces you to some of the most common techniques that can be applied to preprocess images in the context of object segmentation/detection. The preprocess is the first change that we make in a new image before we start with our work and extract the information that we require from it.

Normally, in the preprocessing step, we try to minimize the image noise, light conditions, or image deformations due to the camera lens. These steps minimize the errors when you try to detect objects or segment our image.

Noise removal

If we don't remove the noise, we can detect more objects than we expect because normally noise is represented as a small point in the image and can be segmented as an object. The sensor and scanner circuit normally produce this noise. This variation of brightness or color can be represented in different types, such as Gaussian noise, spike noise, and shot noise. There are different techniques that can be used to remove the noise. We...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY