Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying OpenCV By Example
  • Table Of Contents Toc
  • Feedback & Rating feedback
OpenCV By Example

OpenCV By Example

By : Joshi, Millán Escrivá, Vinícius G. Mendonça
3.8 (5)
close
close
OpenCV By Example

OpenCV By Example

3.8 (5)
By: Joshi, Millán Escrivá, Vinícius G. Mendonça

Overview of this book

Open CV is a cross-platform, free-for-use library that is primarily used for real-time Computer Vision and image processing. It is considered to be one of the best open source libraries that helps developers focus on constructing complete projects on image processing, motion detection, and image segmentation. Whether you are completely new to the concept of Computer Vision or have a basic understanding of it, this book will be your guide to understanding the basic OpenCV concepts and algorithms through amazing real-world examples and projects. Starting from the installation of OpenCV on your system and understanding the basics of image processing, we swiftly move on to creating optical flow video analysis or text recognition in complex scenes, and will take you through the commonly used Computer Vision techniques to build your own Open CV projects from scratch. By the end of this book, you will be familiar with the basics of Open CV such as matrix operations, filters, and histograms, as well as more advanced concepts such as segmentation, machine learning, complex video analysis, and text recognition.
Table of Contents (13 chapters)
close
close
12
Index

Morphological image processing


As discussed earlier, background subtraction methods are affected by many factors. Their accuracy depends on how we capture the data and how it's processed. One of the biggest factors that tend to affect these algorithms is the noise level. When we say noise, we are talking about things, such as graininess in an image, isolated black/white pixels, and so on. These issues tend to affect the quality of our algorithms. This is where morphological image processing comes into picture. Morphological image processing is used extensively in a lot of real-time systems to ensure the quality of the output.

Morphological image processing refers to processing the shapes of features in the image. For example, you can make a shape thicker or thinner. Morphological operators rely on how the pixels are ordered in an image, but on their values. This is the reason why they are really well suited to manipulate shapes in binary images. Morphological image processing can be applied...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY