Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Clojure for Data Science
  • Table Of Contents Toc
  • Feedback & Rating feedback
Clojure for Data Science

Clojure for Data Science

By : Garner
5 (4)
close
close
Clojure for Data Science

Clojure for Data Science

5 (4)
By: Garner

Overview of this book

The term “data science” has been widely used to define this new profession that is expected to interpret vast datasets and translate them to improved decision-making and performance. Clojure is a powerful language that combines the interactivity of a scripting language with the speed of a compiled language. Together with its rich ecosystem of native libraries and an extremely simple and consistent functional approach to data manipulation, which maps closely to mathematical formula, it is an ideal, practical, and flexible language to meet a data scientist’s diverse needs. Taking you on a journey from simple summary statistics to sophisticated machine learning algorithms, this book shows how the Clojure programming language can be used to derive insights from data. Data scientists often forge a novel path, and you’ll see how to make use of Clojure’s Java interoperability capabilities to access libraries such as Mahout and Mllib for which Clojure wrappers don’t yet exist. Even seasoned Clojure developers will develop a deeper appreciation for their language’s flexibility! You’ll learn how to apply statistical thinking to your own data and use Clojure to explore, analyze, and visualize it in a technically and statistically robust way. You can also use Incanter for local data processing and ClojureScript to present interactive visualisations and understand how distributed platforms such as Hadoop sand Spark’s MapReduce and GraphX’s BSP solve the challenges of data analysis at scale, and how to explain algorithms using those programming models. Above all, by following the explanations in this book, you’ll learn not just how to be effective using the current state-of-the-art methods in data science, but why such methods work so that you can continue to be productive as the field evolves into the future.
Table of Contents (12 chapters)
close
close
11
Index

Maximum likelihood estimation

On several occasions throughout this book, we've expressed optimization problems in terms of a cost function to be minimized. For example, in Chapter 4, Classification, we used Incanter to minimize the logistic cost function whilst building a logistic regression classifier, and in Chapter 5, Big Data, we used gradient descent to minimize a least-squares cost function when performing batch and stochastic gradient descent.

Optimization can also be expressed as a benefit to maximize, and it's sometimes more natural to think in these terms. Maximum likelihood estimation aims to find the best parameters for a model by maximizing the likelihood function.

Let's say that the probability of an observation x given model parameters β is written as:

Maximum likelihood estimation

Then, the likelihood can be expressed as:

Maximum likelihood estimation

The likelihood is a measure of the probability of the parameters, given the data. The aim of maximum likelihood estimation is to find the parameter values that make...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY