Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Clojure for Data Science
  • Toc
  • feedback
Clojure for Data Science

Clojure for Data Science

By : Garner
5 (4)
close
Clojure for Data Science

Clojure for Data Science

5 (4)
By: Garner

Overview of this book

The term “data science” has been widely used to define this new profession that is expected to interpret vast datasets and translate them to improved decision-making and performance. Clojure is a powerful language that combines the interactivity of a scripting language with the speed of a compiled language. Together with its rich ecosystem of native libraries and an extremely simple and consistent functional approach to data manipulation, which maps closely to mathematical formula, it is an ideal, practical, and flexible language to meet a data scientist’s diverse needs. Taking you on a journey from simple summary statistics to sophisticated machine learning algorithms, this book shows how the Clojure programming language can be used to derive insights from data. Data scientists often forge a novel path, and you’ll see how to make use of Clojure’s Java interoperability capabilities to access libraries such as Mahout and Mllib for which Clojure wrappers don’t yet exist. Even seasoned Clojure developers will develop a deeper appreciation for their language’s flexibility! You’ll learn how to apply statistical thinking to your own data and use Clojure to explore, analyze, and visualize it in a technically and statistically robust way. You can also use Incanter for local data processing and ClojureScript to present interactive visualisations and understand how distributed platforms such as Hadoop sand Spark’s MapReduce and GraphX’s BSP solve the challenges of data analysis at scale, and how to explain algorithms using those programming models. Above all, by following the explanations in this book, you’ll learn not just how to be effective using the current state-of-the-art methods in data science, but why such methods work so that you can continue to be productive as the field evolves into the future.
Table of Contents (12 chapters)
close
11
Index

Testing a new site design


The web team at AcmeContent have been hard at work, developing a new site to encourage visitors to stick around for an extended period of time. They've used all the latest techniques and, as a result, we're pretty confident that the site will show a marked improvement in dwell time.

Rather than launching it to all users at once, AcmeContent would like to test the site on a small sample of visitors first. We've educated them about sample bias, and as a result, the web team diverts a random 5 percent of the site traffic to the new site for one day. The result is provided to us as a single text file containing all the day's traffic. Each row shows the dwell time for a visitor who is given a value of either "0" if they used the original site design, or "1" if they saw the new (and hopefully improved) site.

Performing a z-test

While testing with the confidence intervals previously, we had a single population mean to compare to.

With z-testing, we have the option of comparing...

bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete