Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Clojure for Data Science
  • Toc
  • feedback
Clojure for Data Science

Clojure for Data Science

By : Garner
5 (4)
close
Clojure for Data Science

Clojure for Data Science

5 (4)
By: Garner

Overview of this book

The term “data science” has been widely used to define this new profession that is expected to interpret vast datasets and translate them to improved decision-making and performance. Clojure is a powerful language that combines the interactivity of a scripting language with the speed of a compiled language. Together with its rich ecosystem of native libraries and an extremely simple and consistent functional approach to data manipulation, which maps closely to mathematical formula, it is an ideal, practical, and flexible language to meet a data scientist’s diverse needs. Taking you on a journey from simple summary statistics to sophisticated machine learning algorithms, this book shows how the Clojure programming language can be used to derive insights from data. Data scientists often forge a novel path, and you’ll see how to make use of Clojure’s Java interoperability capabilities to access libraries such as Mahout and Mllib for which Clojure wrappers don’t yet exist. Even seasoned Clojure developers will develop a deeper appreciation for their language’s flexibility! You’ll learn how to apply statistical thinking to your own data and use Clojure to explore, analyze, and visualize it in a technically and statistically robust way. You can also use Incanter for local data processing and ClojureScript to present interactive visualisations and understand how distributed platforms such as Hadoop sand Spark’s MapReduce and GraphX’s BSP solve the challenges of data analysis at scale, and how to explain algorithms using those programming models. Above all, by following the explanations in this book, you’ll learn not just how to be effective using the current state-of-the-art methods in data science, but why such methods work so that you can continue to be productive as the field evolves into the future.
Table of Contents (12 chapters)
close
11
Index

Summary

In this chapter, we've learned about the process of clustering and covered the popular k-means clustering algorithm to cluster large numbers of text documents.

This provided an opportunity to cover the specific challenges presented by text processing where data is often messy, ambiguous, and high-dimensional. We saw how both stop words and stemming can help to reduce the number of dimensions and how TF-IDF can help identify the most important dimensions. We also saw how n-grams and shingling can help to tease out context for each word at the cost of a vast proliferation of terms.

We've explored Parkour in greater detail and seen how it can be used to write sophisticated, scalable, Hadoop jobs. In particular, we've seen how to make use of the distributed cache and custom tuple schemas to write Hadoop job process data represented as Clojure data structures. We used both of these to implement a method for generating unique, cluster-wide term IDs.

Finally, we witnessed...

bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete